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 43 

Summary 44 

(1) The research conducted, including the rationale 45 

The direct effect of aridity on photosynthetic and water-transport strategies is not easy to discern 46 

in global analyses because of large-scale correlations between precipitation and temperature. We 47 

analyze tree traits collected along an aridity gradient in Ghana, West Africa, that shows little 48 

temperature variation, in an attempt to disentangle thermal and hydraulic influences on plant traits.  49 

(2) Methods 50 

Predictions derived from optimality theory of the variation of key plant traits along the gradient 51 

are tested with field measurements.  52 

(3) Results 53 

Most photosynthetic traits show trends consistent with optimality-theory predictions, including 54 

higher photosynthetic rates in the drier sites, and an association of higher photosynthetic rates with 55 

greater respiration rates and greater water transport. Leaf economic and hydraulic traits show less 56 

consistency with theory or global-scale pattern, especially predictions based on xylem efficiency-57 

sfatety trafeoff. Nonetheless, the link between photosynthesis and water transport still holds: 58 

species (predominantly deciduous species found in drier sites) with both higher sapwood-to-leaf 59 

area ratio (AS/AL) and potential hydraulic conductivity (Kp), implying higher transpiration, tend 60 

to have both higher photosynthetic capacity, and lower leaf-internal CO2.  61 

(4) Conclusions 62 

These results indicate that aridity is an independent driver of spatial patterns of photosynthetic 63 

traits, while plants show a diversity of water-transport strategies along the aridity gradient. 64 

 65 

 66 
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Plain language summary: Along an aridity gradient in Ghana, West-Africa, we used optimality 67 

theory to explain why higher photosynthetic rates should be found at drier places and how plants 68 

arrange water transportation to support quicker photosynthesis at the drier site. We also reported 69 

surprising data-theory inconsistency for some hydraulic traits along the aridity gradient where 70 

further research is needed. 71 

 72 

Introduction 73 

Three key photosynthetic processes are frequently considered when seeking to understand plants 74 

photosynthesis strategies: light availability and electron transport; aridity and water transport; and 75 

CO2 concentration and carboxylation (Farquhar et al., 2001). Plants capacities in these processes 76 

vary considerably along environmental gradients (Wang et al., 2017a; Bahar et al., 2017; Yang et 77 

al., 2019; Oliveras et al., 2020). Recently, many efforts have been made to propose universal rules 78 

to explain worldwide plant photosynthetic strategies, frequently cited as ‘optimality theories’, 79 

which could serve as a basic theoretical framework for vegetation carbon modelling and enable 80 

quantitative predictions of key photosynthetic traits (Franklin et al., 2020; Harrison et al., 2021). 81 

One of the main challenges confronting these universal theories is to explain the ‘pure’ effect of 82 

aridity on photosynthesis (Rogers et al., 2017). Such challenges become particularly pressing in 83 

the context of climate as greater atmospheric dryness (water vapour deficit, VPD) is predicted for 84 

most places (Neelin et al., 2006; Grossiord et al., 2020a; Bauman et al., 2022), which may strongly 85 

influence photosynthesis and hence the carbon cycle (Canadell et al., 2021). However, the 86 

theoretical expectation for the impact of aridity on plant traits based on optimality theories has not 87 

been summarized and tested. Most current earth systems models predict a negative relationship 88 

between photosynthesis (denoted by CO2 assimilation rate per leaf area, Aarea) and VPD simply 89 

due to the closing of stomata without incorporating the dynamics of photosynthetic capacity 90 

(denoted by electron-transport capacity,  Jmax25 and Rubisco carboxylation capacity standardized 91 

to 25 degree celsius, Vcmax25) (Wang et al., 2017a; Green et al., 2020). On the contrary, a study 92 

focusing on Amazonia argued that higher VPD increases photosynthetic capacity which 93 
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counteracts the reduced conductivity, leading to higher photosynthesis under drier climates 94 

(Restrepo-Coupe et al., 2013; Green et al., 2020). However, a global study found the above pattern 95 

only exists in wet ecosystems and higher VPD reduces photosynthesis overall (Fu et al., 2022) 96 

although globally higher Vcmax25 was indeed found for plants grown in drier sites (Peng et al., 2021). 97 

Under experimental conditions, CO2 assimilation was found to be lower under high VPD (Long & 98 

Woolhouse, 1978; Dai et al., 1992; Cunningham, 2005).  99 

With such mixed evidence in the literature, the stand-alone effect of aridity on photosynthesis still 100 

remains unclear. There are two particular challenges. First, on a large spatial scale, aridity can be 101 

confounded with temperature (especially when VPD is used as a metric of aridity). Temperature 102 

is a stronger driver of photosynthesis than aridity (Smith et al., 2019; Peng et al., 2021), but few 103 

studies try to disentangle aridity from temperature (Grossiord et al., 2020a). Second, the effect of 104 

VPD can be confounded with soil water availability. Optimality theory predicted higher Vcmax 105 

and Aarea under higher VPD (Smith et al., 2019) but it is unclear how plants in drier environments 106 

arrange water transportation to support higher Aarea. A comprehensive theoretical framework is 107 

lacking to incorporate the effect of VPD on all leaf-level photosynthesis processes (light, water 108 

and CO2) with full consideration of water delivery to leaves (Mencuccini et al., 2019a). 109 

Here, we examine a dataset of detailed traits measurements along an aridity gradient in West 110 

African forests to disentangle the effect of aridity on photosynthesis from temperature and to 111 

explain the effect with optimality theory. The key questions we address are: (1) do drier 112 

environments have higher photosynthesis rates and how do aridity and photosynthesis interact? (2) 113 

If photosynthetic rates are higher in arid environments, as predicted by optimality theory, how do 114 

plants arrange greater water transportation, given greater water stress in drier places? To answer 115 

these questions, we adopted a theory-data comparison approach where we first review the 116 

expectation of recent ‘universal’ theories and deduced 16 testable predictions (some of which have 117 

previously been tested but with confounding results). We then examined the consistency between 118 

each prediction and field measurement along the aridity gradient (Table 1). Consistency would 119 

give field-observed patterns a mechanistic explanation and reinforce the stand-alone impact of 120 

aridity on the corresponding trait, while inconsistency would imply weakness of the theory and 121 

possible confounding interactions between aridity and other climate variables. Before closing the 122 
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paper, we summarize the consistency and inconsistency with an integrated theoretical framework 123 

to address and explore the ‘pure’ effect of aridity on photosynthesis. 124 

Description of theory and hypotheses development 125 

‘Optimality theory’ was developed recently with the assumption that plants can optimize 126 

photosynthesis and minimize maintenance costs according to their living environments by 127 

optimizing investment in the above processes, which provides a universal explanation of the 128 

variation of photosynthetic strategies under different growing environments (Prentice et al., 2014; 129 

Wang et al., 2017b; Mencuccini et al., 2019a; Stocker et al., 2020; Xu et al., 2021). Although the 130 

above-cited studies have tested the theories on global scales and along elevation gradients, 131 

discussion and validation of these theories along other abiotic gradients, such as aridity gradients, 132 

are still lacking. Therefore, we first review the implication of such theories on plants 133 

photosynthetic strategies along aridity gradients. 134 

In drier sites, higher VPD increases potential transpiration per unit leaf area. As predicted by the 135 

‘least-cost hypothesis’ (Wright et al., 2001, 2003; Medlyn et al., 2011; Prentice et al., 2014), plants 136 

can compensate for high water costs in dry climates by keeping stomata relatively closed. Thus, in 137 

drier sites, plants are expected to have lower leaf internal CO2 concentration (ci), lower internal-138 

to-external CO2 ratio (ci/ca) and lower stomatal conductance (gs). The ‘coordination hypothesis’ 139 

(Beerling & Quick, 1995; Maire et al., 2012; Walker et al., 2014) assumes equilibrium between 140 

Rubisco-limited photosynthesis rates (AC) (depending on Vcmax25 and ci) and electron transport-141 

limited photosynthesis rates (AJ) (depending on Jmax25 and leaf absorbed PPFD) (see the 142 

quantitative expression in (Wang et al., 2017b; Smith et al., 2019; Stocker et al., 2020)). To 143 

maintain such an equilibrium, plants in drier sites are expected to have larger Vcmax25 to compensate 144 

for the lower ci. Otherwise, AC would be lower than AJ resulting in unused capacity for electron 145 

transport (Jmax25). To sum up, lower ci but higher Vcmax25 is expected toward drier sites if Jmax25 146 

stays constant (in which case AJ would be slightly lower due to smaller ci). 147 

In reality, toward drier sites, it is common to see higher leaf absorbed photosynthetic photon flux 148 

density (Iabs) because of less cloud cover and more open canopies. Considering an additional 149 

optimality criterion that Jmax25 is acclimated to Iabs (Smith et al., 2019), supported by multiple 150 
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experiments (Björkman, 1981; Ögren, 1993), we would expect higher Jmax25 in drier sites, which 151 

further encourages higher Vcmax25  (see above paragraph). Higher Jmax25 and Vcmax25 would give rise 152 

to higher AC and AJ. All the above would lead to higher leaf photosynthetic protein cost, hence 153 

higher leaf dark respiration (Rd), and higher transpiration stream maintenance cost, hence higher 154 

stem respiration per leaf area (Rs) (Prentice et al., 2014). Note that Rs is stem respiration per leaf 155 

area (Rstem_leaf hereafter), different from the commonly reported stem respiration per stem area 156 

(Rstem_stem). Some of the above predictions have been seen on global scale; for example, higher Rd 157 

has been found in drier sites (Wright et al., 2001; Atkin et al., 2015) and higher assimilation rate 158 

has been reported from drier sites (Maire et al., 2015). 159 

It is worth noting that Vcmax25, gs and ci here are discussed as an overall value for a forest stand, 160 

disregarding diurnal variation and intraspecific variation (Stangl et al., 2019; Han et al., 2022). At 161 

the species or individual scales, there is a positive correlation between Asat (light-saturated 162 

assimilation rate at 400 ppm), Vcmax25, gs and ci (Wright et al., 2003; Prentice et al., 2014), instead 163 

of the opposite trend of Vcmax25 and ci/ca as discussed above regarding spatial variation only. 164 

Photosynthesis strategies predicted by the optimality theory above can be linked with xylem water 165 

transportation strategies via stomatal behaviour, as given by Fick’s law, 166 

 gs = Aarea / (ca - ci)   (1) 167 

Where gs is stomatal conductance (umol CO2 m-2 s-1), Aarea is CO2 assimilation rate per leaf area 168 

(umol CO2 m2 s-1), and leaf internal (ci, ppm) and external (ca, ppm) CO2 concentration 169 

We focus on daytime conditions that produce maximum rates of transpiration and photosynthesis, 170 

when water loss through stomata must equal water transport through xylem (Brodribb et al., 2002; 171 

Xu et al., 2021): 172 

E = 1.6 gs VPD / Patm = Ks ΔΨmax AS/AL  / h  (2) 173 

Where Patm is atmospheric pressure (Mpa), KS is the sapwood-specific hydraulic conductivity 174 

(mol m–1s–1 MPa–1); AS/AL is the ratio of sapwood to leaf area (m2m–2) ΔΨmax is the 175 
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maximum decrease in water potential from soil to leaves (MPa) h is the transpiration stream 176 

pathlength (m), roughly equivalent to plant height, and E is the transpiration rate (mol m–2s–1), 177 

Combining the above two equations we obtain a link between water transportation and 178 

photosynthesis: 179 

 Ks  ΔΨmax AS/AL  / h = 1.6 VPD Aarea / (ca - ci) /Patm = E (3) 180 

Note that here we focus on forest-stand scale as an average across time. Relationships could be 181 

very different at other scales (Mencuccini et al., 2019a). 182 

In drier sites with higher VPD, despite less open stomata (less gs and less ci), there should 183 

inevitably be a larger E (Granier et al., 1996) and more negative ΔΨmax (Gleason et al., 2013); 184 

therefore smaller maximum tree height, and more negative turgor loss point (TLP, Mpa) in drier 185 

sites to increase hydraulic resistance (note that TLP must be more negative than ΔΨmax) (Ryan & 186 

Yoder, 1997; Bartlett et al., 2012). Equation 3 implies that in drier sites with high VPD, plants 187 

require a larger AS/AL and/or larger Ks in order to support the same amount of photosynthesis 188 

with enhanced transpiration. Following the xylem safety–efficiency trade-off (Manzoni et al., 189 

2013; Gleason et al., 2016; Bittencourt et al., 2016; Grossiord et al., 2020b) (although arguments 190 

against this trade-off exist, here we present testable hypotheses expected by the trade-off),  plants 191 

at drier sites would be expected to have lower hydraulic efficiency and lower hydraulic 192 

conductivity. Lower hydraulic conductivity is often associated with smaller vessel diameter, higher 193 

vessel density and higher wood density (Poorter et al., 2010; Schuldt et al., 2013; Hoeber et al., 194 

2014). Such patterns have been observed along an Australian aridity gradient (Gleason et al., 2013; 195 

Pfautsch et al., 2016), but no effect of aridity on vessel diameter was reported (Olson & Rosell, 196 

2013; Olson et al., 2014). Plants in drier sites should have increased hydraulic safety - more 197 

negative TLP and more negative P50  (Hacke et al., 2001; Martínez-Vilalta et al., 2009; Gleason 198 

et al., 2013; Togashi et al., 2015; Liu et al., 2019; López et al., 2021). In short, toward drier sites, 199 

we would expect to see, higher AS/AL and more negative TLP. The safety-efficiency trade-off 200 

implies lower Ks, smaller vessel diameter, higher vessel density and higher wood density. 201 
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The trade-off between Ks and AS/AL is also embedded in the variance of traits in equation 3. Ks 202 

and AS/AL could vary by two orders of magnitude (100-fold variation) (Mencuccini et al., 2019b) 203 

on a global scale, while ci/ca and Aarea vary much less (ci/ca: 2 fold; Aarea: 10 fold) (Wright et al., 204 

2004; Wang et al., 2017b). This leads to a trade-off between Ks and AS/AL (i.e. KS x AS/AL 205 

should vary less than either of them). However, given that there are also variations of ci/ca, Aarea, 206 

h and  ΔΨmax, it is possible that different species range along a spectrum from high Aarea and E to 207 

low Aarea and E while always satisfying equation 3 (Prentice et al., 2014). 208 

In short, the above review leads to an integrated hypothesis that plants in drier (normally also 209 

brighter) sites tend to develop a photosynthesis strategy with less stomatal conductance and hence 210 

lower ci, stronger photosynthetic capacities (larger Vcmax25, Jmax25 and Aarea) with more 211 

maintenance cost (higher Rd and Rs), higher maximum carbon assimilation rate and larger 212 

maximum evapotranspiration which the water transport system would adjust to with higher AS/AL, 213 

lower Ks, lower tree height and more negative TLP. Information on leaf economic traits is 214 

provided in Appendix 3. We break the above prediction down into 16 testable hypotheses (Table 215 

1) and test each of them along a forest aridity gradient.  216 

 217 

Materials and Methods 218 

Study sites - the aridity gradient 219 

This study presents and analyses physiological traits data collected from seven one-hectare forest 220 

and savanna plots distributed along a wet to dry rainfall gradient across three sites, Ankasa (ANK, 221 

moist rainforest), Bobiri (BOB, semi-deciduous forest) and Kogyae (KOG, dry forest and mesic 222 

savanna), in Ghana, West Africa (Figure S1 S2) (Moore et al., 2018; Oliveras et al., 2020), as part 223 

of the Global Ecosystem Monitoring (GEM) network (Malhi et al., 2021). These sites share very 224 

similar mean annual temperature but span a steep gradient of aridity (Figure 1), which provided a 225 

“natural laboratory” to disentangle the hydraulic aspect of plant traits variation from temperature. 226 
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Although one-hectare plots (e.g. BOB-02) within the same site (e.g. BOB) share very similar air 227 

temperature and precipitation, they can differ in terms of soil moisture supply due to small-scale 228 

variations in soil properties and topography (Table  S1). Along the aridity gradient, there are also 229 

variations in soil and vegetation type, with vegetation seasonality and deciduousness increasing 230 

considerably towards drier sites (Moore et al., 2018). More information about the soil properties 231 

and climate of all three sites can be found in (Domingues et al., 2010; Chiti et al., 2010; Moore et 232 

al., 2018). Moreover, the swampy rainforest (ANK03) is partly inundated during the wet season 233 

unlike ANK01, which is located on a hill and never inundated. From KOG02 (dry forest), KOG04 234 

to KOG05 (savanna), forest plots become more deciduous with a smaller number of trees. Within 235 

any site, there are many common species between plots but species composition (e.g., top five 236 

abundant species) could still be very different. There is almost no common abundant species 237 

between the three sites (ANK, BOB and KOG).  238 

Aridity index and soil moisture stress 239 

At site scales, we calculated an aridity index as the ratio of annual potential evapotranspiration 240 

(PET) to mean annual precipitation (MAP). To understand soil moisture stress experienced by 241 

plants, we reported not only measured surface (12 cm depth) soil volumetric water content, but 242 

also hydraulic simulations on plot scales with SPLASH v2.0 (Sandoval & Prentice, 2020). This 243 

model requires three sets of input data: (1) field observed climate data at site scale during 2011-244 

2016 (2) soil properties measured following the RAINFOR protocols (Quesada et al., 2010); (3) 245 

terrain data: root zone was assumed 2m, while upslope drainage area, slope inclination and 246 

orientation were extracted from (Yamazaki et al., 2019). We considered two modelled indices: the 247 

relative soil moisture saturation (Θ) was defined as the volumetric water content (θ) normalized 248 

by the volumetric water content at saturation (θSAT); a vegetation water stress index (α) was 249 

estimated as the ratio of annual actual evapotranspiration (AET) to PET. 250 

 251 
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Functional trait data measurements 252 

Leaf traits field campaigns to measure leaf traits were conducted using a standardized protocol 253 

between October 2015 and September 2016 in all plots (Oliveras et al., 2020), covering both dry 254 

and wet seasons (see Appendix 1 for sampling protocol). To ensure consistent comparison along 255 

the aridity gradient, only sun leaves were sampled. Sampled leaves were chosen from individuals 256 

that correspond to the most dominant species in each plot. To determine the target species, species 257 

contributing to up to 80% of the total basal area of the plot were ranked by basal area. As equation 258 

3 focuses on daytime conditions with maximum transpiration, we use Kp (potential specific 259 

hydraulic conductivity) as a proxy of Ks and plant stature (Hmax) as a proxy of path length (h). Kp 260 

was calculated from vessel density and vessel diameter following (Poorter et al., 2010).  261 

Following (Prentice et al., 2014), we calculated stem respiration per leaf area (Rs_leaf) instead of 262 

the commonly presented Rs_stem, as a ‘maintenance cost of photosynthesis’ (See Appendix 1). 263 

To our knowledge, Rs_leaf has not previously been presented with in-situ data in the literature. 264 

Here we argue the importance to understand stem respiration from per leaf area perspectives 265 

because (1) higher stem respiration per stem area has been found in wetter sites (Yang et al., 2016), 266 

contradictory to theoretical expectation (Prentice et al., 2014) (2) consistency with photosynthetic 267 

traits which were commonly reported per leaf area. 268 

All data reported in this study were field-measured except for wood density, which was obtained 269 

from a global species database (Zanne et al., 2009). Global scale sapwood-to-leaf-area ratio in 270 

Figure 3 is sourced from (Mencuccini et al., 2019b). Global scale vessel diameter in Figure S4 is 271 

sourced from (Choat et al., 2012).  272 

Statistical analysis 273 

Hypotheses 1-14 (Table 1) were tested by significant differences between wet and dry sites. 274 

Principal component analysis (PCA) and standardized major axis regression are used to understand 275 

the relationship between Ks, As/AL and photosynthesis traits (Hypothesis 15-16).  276 

We performed a plot-to-plot comparison in answering Hypotheses 1 to 14 as follows: (1) The 277 

distribution was visually inspected with histograms and transformations were applied if necessary. 278 
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(2) Outliers were checked with the R package outliers::scores, ‘iqr’ method with threshold 1.5. 279 

This removed leaves/trees with extreme values but made the community-weighted mean a better 280 

representation of the whole plot. (3) Community-weighted means were calculated based on the 281 

basal area of each species. Standard error was calculated with the same weights (Madansky & 282 

Alexander, 2017). (4) Significance of differences in plot-to-plot community-weighted means were 283 

then tested with lm(), glht(), and cld(). (See Rscript community_weighted_mean_Ghana_log_YS.R 284 

for a full description). In testing Hypotheses 1-14, a hypothesis was accepted if KOG (dry region) 285 

was significantly different to ANK (wet region) while BOB (middle aridity) sat in between (Figure 286 

1). (5) Variance partitioning was done with vegan::varpart(), following the ‘RDA’ method with 287 

the expression: varpart (Trait, ~ Plot, ~ Species, data = Trait). Variance partitioning reveals 288 

whether the change of traits along the aridity gradient was driven by intraspecific or interspecific 289 

variation. Variance partitioning is also used to diagnose whether the intra-specific variation or 290 

measurement errors are overwhelming. To double-check the impact of intraspecific variation, we 291 

recalculated a community-weighted mean by assuming that the same species share the same value 292 

of trait (i.e. remove intraspecific variation) and extrapolated traits value to forest plots without trait 293 

measurements (Appendix 5) 294 

For hypothesis 16, we applied Principal Component Analysis (PCA) with FactoMineR::PCA(), 295 

(See Rscript  ~/link_hydraulic_photosynthesis/PCA.R). Asat, Kp, AS/AL and Vcmax25 were log10 296 

transformed. We avoid standardization by setting ‘scale.unit’ as False in function PCA() so that 297 

the variance of a trait was reflected by the length of an arrow in Figure 2. Trait-trait correlations 298 

(bivariate plot) were calculated (Rscript Compare_with_Others.R). For hypothesis 15, the slopes 299 

and significance of correlation were calculated using Standard Major Axis Regression (function 300 

smatr::sma()), which is preferable to ordinary least squares regression in summarizing the 301 

relationship between two plant traits (Wright et al., 2005; Warton et al., 2012) as it considers 302 

uncertainties of both axes. All analyses were done at the species level (i.e. each point in Figure 2 303 

represents a species) to compare with other studies and join among datasets. Hypothesis 15 was 304 

also tested at the global scale because Ks was reported to negatively correlate with AS/AL but 305 

there is no report on the global correlation between Kp and AS/AL (Appendix 4). 306 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.10.523419doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523419


 

 

Results 307 

 308 

Aridity gradient 309 

The values of the aridity index (PET/MAP) (site scale) revealed a clear aridity gradient from ANK 310 

(moist rainforest site) to BOB (mid) and KOG (dry) (Appendix 2). The same order could be arrived 311 

at with VPD or maximum cumulative water deficit (MCWD). The standard deviation of monthly 312 

VPD also suggested that the seasonality was weaker in ANK and increased towards KOG. 313 

On the other hand, the simulations of relative soil moisture saturation (Θ) and vegetation water 314 

stress index (α) (plot scale) showed that BOB was the least soil moisture stressed site, followed by 315 

ANK and KOG. BOB-02 had the highest values in these two metrics. The model reported the 316 

highest runoff at ANK-03, capturing to some degree the seasonal flooding, as also observed in the 317 

field. The different patterns of Θ (or α) to aridity index along the aridity gradient were caused by 318 

the soil characteristics which in turn define water holding capacity (WHC) and hydraulic 319 

conductivity; for example, the plots in BOB were atmospherically drier (higher PET/MAP) than 320 

in ANK but they could hold more water (higher Θ). Especially in BOB-02, the infiltration rate was 321 

strongly reduced (60 mm/hr, less than half of ANK plots), and hence water can stay more time in 322 

the root zone while percolating. This acts as a buffer against the evaporative demand, maintaining 323 

water availability during dry months. The hydrological modelling outputs also matched with field 324 

observation of plot vegetation characteristics (see Methods). 325 

For presentation (Figure 1), we rank sites by aridity index and then plots within sites by soil 326 

moisture stress.  327 

 328 

The effect of aridity on traits 329 

From a photosynthesis perspective, along the aridity gradient, we saw consistency between 330 

theoretical prediction and field measurements (Table 1) for all traits: ci/ca (0.71 to 0.85), Vcmax25  331 
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(21.58 to 46.48 umol CO2 m2 s-1), Jmax25 (38.48 to 91.44 umol CO2 m2 s-1), Rd (-1.66 to -2.41 332 

umol CO2 m2 s-1), Rs (3.76 to 11.70 umol CO2 m2 s-1), Asat (4.56 to 7.72 umol CO2 m2 s-1) and 333 

Amax (15.88 to 22.86 umol CO2 m2 s-1). However, we saw less consistency between theory and 334 

field measurements regarding leaf economic traits (Appendix 3). Nmass was expected to increase 335 

from wet to dry but this is not backed by our field measurements. LMA was slightly higher in the 336 

dry sites than in the wet sites as theoretically expected, but not a gradual increase. Pmass increased 337 

gradually from wet to dry plots, (from 0.94 to 1.67 g kg-1) along the gradient in accord with global 338 

observation. Although the link among soil nitrogen, leaf nitrogen and photosynthesis was 339 

frequently made (Walker et al., 2014; Gvozdevaite et al., 2018), we found that such a link is rather 340 

ambiguous along the aridity gradient on site scale. 341 

From a water transpiration perspective, the hypotheses were consistent with field measurements 342 

for leaf traits. AS/AL was higher in drier sites (359.62 to 901.66 cm2 m-2) and TLP was more 343 

negative in drier sites (-1.33 to -1.63 Mpa). However, no consistency was found between 344 

theoretical expectations and field measurements for any xylem-related traits. Along the aridity 345 

gradient, there was an increasing trend of field Kp toward drier sites (from 28.62 to 59.29 kg m-1 346 

Mpa-1 s-1), against the xylem safety-efficiency trade-off. Behind the above trend, vessel diameter 347 

and vessel density also contradicted the hypotheses. Vessel diameter did not change along the 348 

aridity gradient, while vessel density increased toward drier sites (from 49.14 to 82.07 micron). 349 

The drier sites (KOG) had higher Kp, higher twig density and higher wood density than the wetter 350 

sites on site scales, but we also found Kp negatively correlated with twig density on species scales 351 

(see Appendix 4). ANK-01 had very high wood density and twig density which breaks the 352 

increasing trend formed by other plots. To conclude, the trends of all photosynthetic traits were 353 

successfully predicted by theories based on VPD alone. As leaf economy traits, soil nutrients and 354 

soil moisture (Θ or α) overall did not have a clear trend along the gradient, considering nutrient 355 

and water deliveries to leaves does not seem to aid the prediction of variation of photosynthetic 356 

traits along the aridity gradient. 357 

With variance partitioning, we found that the plot-to-plot trends of all traits were dominated by 358 

inter-specific rather than intra-specific variation (i.e., components [a] are smaller than [b] in 359 

Appendix 5). Such a finding was expected as there are few common species between plots. The 360 
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analogous patterns between twig and wood density along the aridity gradient also supported 361 

species turnover since twig density was field measured and wood density was parsed from a global 362 

database by species (Zanne et al., 2009). To double-check the conclusion of predominant 363 

interspecific variation, we recalculated community weighted means by assuming that the same 364 

species share the same value of trait (i.e. remove intraspecific variation) and extrapolated trait 365 

values to forest plots without trait measurements. We found that the conclusions in Table 1 still 366 

hold after extrapolation (Appendix 5). The trend of trait variation from plot to plot could be well 367 

re-constructed on a species basis, which hints at the possibility of extrapolation to other sites with 368 

species composition information or upscaling to larger scales. Nonetheless, for within plot 369 

variance, intraspecific variation or measurement errors (component [d]) were large for most traits: 370 

accounting for 95% of turgor loss point variance, followed by Vcmax25 (74%) and Jmax25 (66%). 371 

 372 

The coordination between photosynthesis and water transportation 373 

Data from our West African aridity gradient reveal a weak positive correlation between Kp and 374 

AS/AL, contradictory toHypothesis 15, and inconsistent with the negative correlation that emerged 375 

on global scales (Appendix 4). AS/AL for the Ghanaian aridity gradient was higher than the 376 

pantropical average (Appendix 4). For hypothesis 16, we further explore the link between AS/AL, 377 

Kp and photosynthetic trait using PCA. Species with both high AS/AL and Kp tend to have higher 378 

Vcmax25 and lower ci/ca. Such species tend to be deciduous and appear more in drier plots (Figure 379 

2). There was a larger variance of hydraulic traits compared to photosynthetic traits (Figure 2). 380 

The pattern is consistent if we redo the above PCA with Asat instead of Vcmax25 (Appendix 4). This 381 

finding supports hypothesis 16 (Table 1) as well as equation 3.  382 

Discussion 383 

The trend of traits along the aridity gradient 384 

Although most hypotheses (Table 1) have been tested with spatially varying aridity at multiple 385 

scales (Harrison et al., 2021), testing them along the Ghana aridity gradient helps to scrutinize the 386 
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pattern in the absence of temperature variation. The patterns of all photosynthetic traits measured 387 

along the aridity gradient (ci/ca, Jmax25, Vcmax25, Dresp, Rs, Asat, Amax, namely hypotheses 1-7) 388 

are consistent with the theoretical expectations, which underscores that aridity is a direct and 389 

critical driver of photosynthetic traits, in absence of confounding effect with temperature. The 390 

increase of photosynthetic capacity towards drier sites is useful in explaining multiple previous 391 

observations, including that (1) savanna has higher photosynthesis rates than wet evergreen forest 392 

(Gvozdevaite, 2018; Oliveras et al., 2020) (2) woody savanna has sparse canopy but similar net 393 

primary productivity to wet evergreen forest (Moore et al., 2018) (3) for wet Amazonia forests, 394 

leaves flushed in dry season have higher photosynthetic capacities which increase forest 395 

productivity (Wu et al., 2020; Green et al., 2020).  396 

From a water transportation perspective, forests in drier sites have higher TLP, lower Hmax and 397 

higher AS/AL (agreed with hypotheses 8-10), in support of a greater mid-day transpiration stream. 398 

However, hypotheses derived from the safety-efficiency trade-off (hypotheses for Kp and vessel 399 

diameter) were not in agreement with measurements along the aridity gradient. It is possible that 400 

the trade-off may work well for single-species studies (Pritzkow et al., 2020) and become weak 401 

on large scales and across species (Gleason et al., 2016; Grossiord et al., 2020b). Much higher 402 

deciduousness in KOG (dry site) than in the wet sites may play a role as higher hydraulic efficiency 403 

was reported from deciduous species or more deciduous forests (Choat et al., 2005; Chen et al., 404 

2008; Liu et al., 2021). We reported a negative correlation between AS/AL and Kp at global scales 405 

but a positive correlation along the aridity gradient (Appendix 4). One of the reasons for these 406 

contrasting opposite correlations may lie in a geographical sampling bias – the global dataset with 407 

scarce data points from West Africa compared with the Ghanaian dataset. The other possibility 408 

could be a confounding effect by temperature or vegetation type at the global scale (a Simpson’s 409 

paradox); for example, a negative correlation between AS/AL and Ks was reported globally 410 

(Mencuccini et al., 2019b) and on continental (Australia) scales (Gleason et al., 2012), but an 411 

insignificant correlation was also reported for tropical forest stands on local scales without varying 412 

temperature (Poorter et al., 2010; Schuldt et al., 2013; Hoeber et al., 2014).  413 

By assuming that traits with a clear and strong trend along the aridity gradient are more tightly 414 

bound with aridity (Figure 1), ci/ca, TLP and AS/AL was found to be the most aridity-driven traits. 415 
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The runners-up are Rd, Rs, Jmax25, and Vcmax25, which was thought acclimated to ci/ca and light 416 

intensity (Wang et al., 2017b). Although ci/ca, Vcmax25, Kp and AS/AL all vary from wet to dry 417 

sites, the PCA (Figure 2) further illustrates that, surprisingly, it is photosynthetic traits instead of 418 

hydraulic traits that contrast species from wet to dry sites (also from evergreen to deciduous). 419 

Given that large photosynthetic traits variation from wet to dry plot was induced by species 420 

turnover (Appendix 5), our studies hint that facing a drier climate, if allowed time, West African 421 

forests photosynthesis could adapt to a drier climate by changing species abundance with possibly 422 

more deciduousness and higher photosynthesis capacity albeit less stomatal openness (Aguirre-423 

Gutiérrez et al., 2019). Without consideration of the positive effect of aridity on photosynthetic 424 

capacity, models could possibly underestimate forest productivity under future drier climates. 425 

Combining photosynthesis and hydraulic hypotheses 426 

Our analysis unifies photosynthesis and hydraulic hypotheses to explain plant strategies along the 427 

aridity gradient. Namely, species in drier sites (with more deciduousness) tend to develop a 428 

photosynthesis strategy with less stomata openness (ci/ca), stronger photosynthetic capacities 429 

(Jmax25 and Vcmax25) with more maintenance cost (higher Rd and Rs), quicker photosynthesis rate 430 

(Asat) and larger maximum transpiration, supported by large Kp and large AS/AL. The product of 431 

AS/AL and Kp is a proxy of water delivery per leaf area, which was previously found well 432 

correlated with proxies of photosynthesis rate: Asat (Santiago et al., 2004), quantum yield of 433 

electron transport (Brodribb & Feild, 2000) and electron transfer rate (Brodribb et al., 2002). The 434 

large variance of wood traits (way larger than leaf traits) (Mencuccini et al., 2019b), hints that 435 

plants might have a wide range of choices of traits combinations to provide adequate water 436 

transportation (Sperry et al., 2002; Prentice et al., 2014) in drier sites to support faster 437 

photosynthesis. Further investigations into xylem functioning are required to understand how 438 

larger water transportation was achieved in drier sites. Notably, we successfully predicted plants 439 

photosynthesis strategies along the aridity gradient (hypothesis 1-7) based solely on VPD without 440 

incorporating leaf economic traits nor soil moisture. Nonetheless, our theoretical deduction 441 

implicitly assumes that plants in the drier site could arrange water transportation (e.g., high AS/AL 442 

and high Kp in Figure 2) and have adequate access to belowground water. Regarding the ongoing 443 

discussion on the impact of VPD versus soil moisture, soil moisture may be playing a role at other 444 
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temporal scales (e.g., daily) (Liu et al., 2020; Fu et al., 2022) or under extreme soil drought (Sperry 445 

et al., 2002).  446 

Conclusion 447 

Along the aridity gradient, we found that species with both higher AS/AL and Kp (greater potential 448 

mid-day transpiration steam) tend to have higher Vcmax25 and lower ci/ca, which appears more 449 

in drier sites with more deciduous species. With such a working example in West Africa, the study 450 

not only underscores the importance of incorporating the positive effect of aridity on 451 

photosynthesis capacity in carbon modelling but also simplifies the coupling between carbon and 452 

water cycle:  future modelling studies, following our theoretical framework, could estimate site-453 

time-averaged leaf-level photosynthesis simply from VPD only and consider soil moisture (or 454 

water availability) in simulating forest stands dynamic such as drought-induced mortality or 455 

seasonality (Hubau et al., 2020; Bauman et al., 2022). 456 

Data availability 457 

Figures could be downloaded from 458 

https://github.com/Hzhang-ouce/Ghana_rainfall_trait_variation_optimality_github. To reproduce 459 

figures, data and R codes mentioned in the main text could also be found in the above repository.  460 

 461 
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 479 

Table 1 Traits name, unit, hypotheses and findings from field measurements along the rainfall 480 

gradient, Green color denotes consistency between theory and our field data. Orange color 481 

denote inconsistency.      482 

 483 

# Hypotheses Data Consistent 

  Variables associated with photosynthesis and respiration (Optimality theory) 

1 
Toward drier sites,  the ratio between leaf-internal 
and ambient CO2 (ci/ca, %) (from 13C) decreases. 

Decrease  ✓ 

2 
Toward drier sites, Rubisco carboxylation capacity at 

25 C° (Vcmax25, umol CO2 m2 s-1) increases.  
Slight 

increase 
✓ 

3 
Toward drier sites, electron transport capacity at 25 

C° (Jmax25, umol CO2 m2 s-1) increases. 
Slight 

increase 
✓ 

4 
Toward drier sites, light saturated assimilation rate at 

400 ppm (Asat, umol CO2 m2 s-1) increases. 
Increases ✓ 

5 
Toward drier sites, light saturated assimilation rate at 

2000 ppm (Amax, umol CO2 m2 s-1) increases. 
Increase ✓ 
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6 
Toward drier sites, leaf dark respiration (Rd, umol 

CO2 m2 s-1) increases. 
Increase ✓ 

7 
Toward drier sites, specific stem respiration (Rs, umol 

CO2 m2 s-1) increases. 
Increase ✓ 

  Variables associated with water transportation 

8 
Toward drier sites, Sapwood to leaf area ratio (Huber 

value) (AS/AL, cm2 m-2) increases. 
Increase ✓ 

9 
Toward drier sites, turgor loss point (TLP, MPa) 

becomes more negative. 
More 

negative 
✓ 

10 
Toward drier sites, plant stature, calculated as 

maximum tree height of a species (Hmax, m) 
decreases. 

Slight 
decrease 

✓ 

11 
Toward drier sites, wood density  (g cm-3) and twig 

density (g cm-3) increase (if following the safety-
efficiency trade-off). 

Slight 
increase 

✓ 

12 
Toward drier sites, potential specific hydraulic 

conductivity (Kp, kg m-1 Mpa-1 s-1) decreases (if 
following the safety-efficiency trade-off). 

Slight 
increase 

  

13 
Toward drier sites, vessel diameter (micron) 

decreases. (if following the safety-efficiency trade-
off). 

No trend   

14 
Toward drier sites, vessel density (mm-2) decreases. 

(if following the safety-efficiency trade-off).  
Increase   

15 
AS/AL and Kp are negatively correlated. (if following 

safety-efficiency trade-off, and global scale analysis – 
see introduction)  

Positive 
correlation 

  

16 
For species with high AS/AL and Kp, there is high 

Vcmax (or high Asat) 
See Figure 3 ✓ 

 

‘Data’ column summarize patterns in Figure 1.  A trend of trait is qualitatively 
recognized if KOG (dry region) is significantly different to ANK (wet region) while 

BOB ranks between. 'Slight increase' suggest that the pattern fits the above 
criteria broadly albeit one plot behave inconsistently. Colours indicate results that 
are consistent (green), weakly consistent (light green) and inconsistent (orange) 

with theoretical expections. Ticks in the  column 'consistent' indicate  consistency 
between hypothesies and data 

 484 
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 490 

 491 

 492 

Figure 1 Plot scale community weighted mean (with standard error) from the wettest (left) to the 493 

driest (right) plot. Mean annual air temperature, precipitation and soil volumetric water content 494 

at 12 cm depth were also shown. Forest plots are arrayed from left to right in order of increasing 495 

aridity according to the aridity gradient description described in the text. The number denotes the 496 

number of samples, which could be a leaf, a branch, a tree or a species depending on the variable. 497 

The letters denote significance (P<0.05) in plot-to-plot difference. 498 

 499 
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Figure 2 Principal components analysis for Huber value (AS/AL), the ratio between leaf internal 503 

and ambient CO2 (ci/ca), Rubisco carboxylation capacity at 25 degree (Vcmax25) and potential 504 

specific conductivity (Kp) on species scale. Values are transformed to achieve normal distribution 505 

but not standardized to equal variance; therefore the length of arrows denotes the variance of 506 

the specific trait. The ellipses for each site are confidence ellipses around group mean points. The 507 

PCA axes in all figures are identical. Note that the three figures display the same PCA, but with a 508 

different classification of scatter points. 509 

 510 
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