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Abstract
Leaf area index (LAI) underpins terrestrial ecosystem functioning, yet our ability to 
predict LAI remains limited. Across Amazon forests, mean LAI, LAI seasonal dynam-
ics and leaf traits vary with soil moisture stress. We hypothesise that LAI variation 
can be predicted via an optimality-based approach, using net canopy C export (NCE, 
photosynthesis minus the C cost of leaf growth and maintenance) as a fitness proxy. 
We applied a process-based terrestrial ecosystem model to seven plots across a 
moisture stress gradient with detailed in situ measurements, to determine nominal 
plant C budgets. For each plot, we then compared observations and simulations of 
the nominal (i.e. observed) C budget to simulations of alternative, experimental budg-
ets. Experimental budgets were generated by forcing the model with synthetic LAI 
timeseries (across a range of mean LAI and LAI seasonality) and different leaf trait 
combinations (leaf mass per unit area, lifespan, photosynthetic capacity and respi-
ration rate) operating along the leaf economic spectrum. Observed mean LAI and 
LAI seasonality across the soil moisture stress gradient maximised NCE, and were 
therefore consistent with optimality-based predictions. Yet, the predictive power of 
an optimality-based approach was limited due to the asymptotic response of simu-
lated NCE to mean LAI and LAI seasonality. Leaf traits fundamentally shaped the 
C budget, determining simulated optimal LAI and total NCE. Long-lived leaves with 
lower maximum photosynthetic capacity maximised simulated NCE under aseasonal 
high mean LAI, with the reverse found for short-lived leaves and higher maximum 
photosynthetic capacity. The simulated leaf trait LAI trade-offs were consistent with 
observed distributions. We suggest that a range of LAI strategies could be equally 
economically viable at local level, though we note several ecological limitations to 
this interpretation (e.g. between-plant competition). In addition, we show how leaf 
trait trade-offs enable divergence in canopy strategies. Our results also allow an as-
sessment of the usefulness of optimality-based approaches in simulating primary 
tropical forest functioning, evaluated against in situ data.
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1  | INTRODUC TION

Leaf area index (LAI, the total one-sided leaf area per unit ground 
area) determines canopy light interception, evapotranspiration and 
energy exchange between the land and atmosphere, driving sig-
nificant spatial and temporal variability in carbon (C) assimilation 
(Caldararu et  al.,  2012; Muraoka et  al.,  2010; Street et  al.,  2007; 
Xu & Baldocchi, 2004). Accordingly, LAI is a key property in the in-
vestigation of global biogeochemical cycles for both field and mod-
el-based studies (Baldocchi et al., 1996; Carswell et al., 2002; Sellers 
et al., 1997). Principal determinants of global variation in LAI include 
moisture stress, photoperiod, temperature and nutrients (Fisher 
et al., 2012; Grier & Running, 1977; Iio et al., 2014; Jolly et al., 2005; 
Schleppi et al., 2011; Wright et al., 2013).

However, our ability to simulate spatial and temporal variation 
in LAI remains limited. Resolving this knowledge gap is important 
in the tropics (De Weirdt et al., 2012; Kim et al., 2012) as its forests, 
for instance those in the Amazon, have a large influence on the 
global C cycle (Liu et al., 2017; Malhi et al., 2008; Pan et al., 2011) 
and climate system. Broad patterns across the Amazon basin are 
clear; mean LAI decreases and LAI seasonality increases with in-
creasing soil moisture stress, as forests shift from humid towards 
seasonally dry (Araujo-Murakami et al., 2014; Malhi et al., 2014). 
However, the climate sensitivity of phenological change remains 
unpredictable.

A key challenge in process-based modelling of LAI in tropical for-
ests is to capture the phenological sensitivity to climatic forcings, via 
leaf senescence and leaf net primary productivity (NPP). Leaf-out tim-
ing and leaf turnover are often dependent on environmental factors 
including plant available water and radiation (Myneni et al., 2007); 
however, these processes are highly parameterised within models 
and lack a clear theoretical underpinning (Table S1). Moreover, many 
models continue to simulate leaf NPP as a fixed fraction of total NPP 
(Clark et  al.,  2011; Thornton & Zimmermann,  2007). Such model 
structures lack the capacity to actively vary LAI in response to soil 
moisture stress, particularly within the context of climatic change. 
As a result, current terrestrial biosphere and ecosystem models pre-
dict LAI dynamics poorly for Amazon forests across a range of dry 
season intensities: in a model data comparison study for this region, 
Restrepo-Coupe et al. (2017) found that of the models tested (IBIS, 
ED2, JULES and CLM3.5), only ED2 did not grossly overestimate 
mean LAI. Indeed, none of the models tested were able to capture 
dry season changes in LAI for equatorial forests. Xu et  al.  (2016) 
similarly found that while the ED2 model (with an updated PFT and 
hydrology scheme) was able to capture spatial patterns in LAI across 
the Central American region, it simulated mean LAI c. 1 m2/m2 higher 
than MODIS estimates, and its simulated LAI seasonality was lower. 
However, it is important to note that uncertainty in MODIS LAI es-
timates is high in tropical regions (Liu et al., 2018; Xu et al., 2018).

The simulation of seasonal and annual LAI dynamics could be 
usefully improved via an optimality-based approach (Anten,  2016; 
Thomas & Williams,  2014). Such an approach assumes that plants 
aim to maximise fitness (i.e. optimise), where fitness is defined as 

the capacity to grow, reproduce and survive (Geber & Griffen, 2003; 
Violle et al., 2007). Within an optimisation framework, leaf, root and 
stem growth, together with plant traits, are adjusted to maximise 
plant fitness. Net canopy C export (NCE; or variant of) is a commonly 
used fitness proxy (Franklin et al., 2009; McMurtrie & Dewar, 2011; 
McMurtrie et al., 2008). Akin to leaf level C optimisation approaches 
(Ackerly, 1999; Kikuzawa, 1991), NCE balances canopy level C gain via 
gross primary productivity (GPP) against C loss via growth (NPPLeaf) 
and respiration (RMLeaf and RGLeaf; leaf maintenance and leaf growth 
respiration, respectively) (Givnish, 2002; Reich et al., 2009).

The maximisation of NCE is dependent on leaf traits, includ-
ing but not limited to, photosynthetic capacity, leaf mass per unit 
area (LMA), leaf maintenance respiration rate and leaf lifespan 
(Field,  1983; McMurtrie & Dewar,  2011). Leaf traits directly influ-
ence the rate of C gain via photosynthetic capacity. Leaf traits also 
directly influence C losses, including C used for leaf growth via LMA 
and leaf maintenance respiration via metabolic activity (Thomas 
et  al.,  2019). In addition, leaf traits indirectly affect C assimilation 
and leaf maintenance C costs, through the influence of leaf lifespan 
on total standing leaf biomass.

Leaf traits vary widely across the Amazon basin. Leaf nitrogen 
(N) content is associated with photosynthetic capacity and mainte-
nance respiration (Evans, 1989; Reich et al., 2008), varying sevenfold  
across Amazonia (6–41 mg/g) while LMA varies tenfold (30–299 g/m2;  
Fyllas et al., 2009) and individual leaf lifespans can range from less 
than 2 months to over 4 years (Reich et al., 1991). Combinations of 
leaf traits have been shown to exist along a leaf-economic spectrum, 
exhibiting trade-offs among key trait-based axes of functionality 
(Wright et  al.,  2004, 2005; Wright & Westoby,  2002). ‘Slow’ leaf 
traits (i.e. long leaf lifespan, high LMA, low photosynthetic capacity 
and low metabolic rate) typically dominate in evergreen terra-firme 
forests (e.g. Carswell et al., 2000), while fast leaf traits (i.e. short leaf 
lifespan, low LMA, high photosynthetic capacity and high metabolic 
rate) are more prevalent in seasonally dry forests (Fyllas et al., 2009; 
Givnish, 2002; Poorter & Bongers, 2006; Wright et al., 2001). It is 
therefore critical to account for spatial variation in leaf traits, and 
their covariance, when investigating the interaction between NCE, 
LAI and soil moisture stress across Amazon forests.

Optimality-based canopy models have had some success in pre-
dicting mean tropical LAI and its seasonality. For example, Caldararu 
et al. (2016) present a leaf phenology model which optimises net C 
assimilation (photosynthesis minus leaf maintenance C costs) as a 
function of temperature, available light, soil water and leaf ageing. 
The model was able to explain 98% of spatial variation in tropical 
forest mean LAI, and 63% of variation in LAI amplitude (for the year 
2006; where the model was parameterised on a pixel-by-pixel basis 
using a Markov Chain Monte Carlo fitting algorithm against MODIS 
LAI training data for the years 2001–2005). However, Caldararu 
et  al.  (2016) did not compare fitted model parameters (which in-
cluded photosynthetic efficiency, leaf maintenance C costs and 

(1)NCE=GPP− NPPLeaf−RMLeaf−RGLeaf.
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leaf ageing rate) to ground-based estimates, nor did fitted param-
eters adhere to known inherent co-variation as a result of physio-
logical trade-offs (Osnas et al., 2013). Elsewhere, leaf lifespan has 
been presented as an emergent property of C optimality modelling, 
evaluated against observation data (Xu et al., 2017). While optimal-
ity-based canopy models have been applied globally, model evalu-
ation against tropical forests’ field estimates of C fluxes (i.e. GPP, 
NPP and respiration) has been limited (Caldararu et al., 2014; Vico 
et al., 2017). Furthermore, current approaches have yet to explore 
how observed variation in traits (photosynthetic capacity, LMA, leaf 
maintenance respiration rate and leaf lifespan) affect C cost and 
gain dynamics. Until now, a lack of fundamental information on C 
uptake, allocation, metabolism and plant traits has limited the scope 
for more detailed optimisation theory testing against tropical forest 
in-situ data.

To this end, we use the process-orientated terrestrial ecosystem 
Soil-Plant-Atmosphere model (SPA), to investigate LAI optimality 
through analysis of plant C and water cycles, for forest plots with de-
tailed C budget measurements across an Amazonian moisture stress 
gradient. Previous work calibrating SPA to plots across the moisture 
stress gradient, has shown that modelled C dynamics are consistent 
with field estimates (Flack-Prain et al., 2019), and therefore provide 
a basis for model experimentation of C dynamics.

Our key science questions are:

1.	 How does (a) mean LAI and (b) LAI seasonality impact NCE 
trade-offs between leaf C costs and C assimilation across the 
moisture stress gradient?

2.	 Are in situ LAI measurements consistent with optimality-based 
predictions?

3.	 How do trait trade-offs across the leaf economic spectrum impact 
optimal LAI dynamics?

For question 1, we hypothesise that leaf growth and maintenance 
C costs increase with mean LAI independent of climate (Figure 1). 
In the absence of drought, GPP increases with mean LAI (prior to 
shading effects), making high LAI an optimal strategy. Under high 
moisture stress, GPP is increasingly limited at higher LAI, resulting 
in a lower optimal leaf area. With respect to LAI seasonality (see 
Equation 2), we hypothesise that under low seasonal moisture stress 
leaf C costs increase with LAI seasonality. High LMA and faster leaf 
turnover result in higher leaf growth costs. In addition, (annual) GPP 
decreases as LAI seasonality increases. As a result, we predict asea-
sonal LAI will be optimal for forests with more consistent year-round 
rainfall. Conversely, where seasonal moisture stress is high, we pre-
dict leaf C costs decline as LAI seasonality increases. Maintenance 
respiration costs decrease alongside seasonal declines in LAI. GPP 
does not increase as LAI seasonality declines if GPP is limited by 
seasonal moisture stress. We therefore hypothesise that higher LAI 
seasonality will be economically optimal in sites with stronger sea-
sonal climates. As such, we predict that in response to question 2, C 
cycle dynamics under optimal mean LAI and LAI seasonality (i.e. that 
which maximises NCE) will reflect and explain in-situ data.

For question 3, we investigate how NCE responds to changes 
in leaf traits (photosynthetic capacity, LMA, leaf maintenance res-
piration rate and leaf lifespan). Leaf traits determine C costs of 
canopy construction and longevity, which influence the economics 
of optimisation. Therefore, an alternative hypothesis is that varia-
tion in leaf traits will allow aseasonal LAI even in seasonal climates. 
Optimal leaf traits (i.e. that which maximise NCE) are predicted to 
match observed trait distributions across the moisture stress gra-
dient. Furthermore, we hypothesise that leaf traits and LAI will be 
inextricably linked, and that optimal leaf trait strategies will depend 
on LAI and vice versa.

Optimisation approaches could offer a unique opportunity to 
reduce uncertainty in predictions of Amazon phenology, and conse-
quently C fluxes. This study will test the suitability of a C economic 
optimisation approach to predict ecosystem functioning in response 
to soil water limitation. We use Amazon permanent sample plots with 
uniquely detailed timeseries measurements of C fluxes and LAI, to-
gether with a comprehensive suite of leaf trait estimates (Doughty 
et al., 2015; Fyllas et al., 2009; Malhi et al., 2015). We simulate a range 
of mean LAI and LAI seasonalities and evaluate their optimality by com-
paring their NCE. This approach allows us to present comprehensive 

F I G U R E  1   Hypothesised gross primary productivity (GPP), net 
canopy C export (NCE) and leaf growth and maintenance  
C costs across a mean leaf area index (LAI) gradient for a typical 
low and high moisture stress plot. Optimal LAI is lower for high 
moisture stress plots, due the effect of water limitation on stomatal 
conductance, consequently limiting GPP and NCE at higher leaf 
area. GPP and NCE increase with mean LAI for low moisture stress 
plots as water constraints to stomatal conductance are lower
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predictions about the sensitivity of NCE to LAI. Furthermore, we are 
able to present trade-offs in C allocation dynamics, leaf traits and soil 
moisture stress, referenced against in situ data. We discuss the poten-
tial for optimisation approaches to improve earth system model pre-
dictions of canopy properties and C cycling.

2  | MATERIAL S AND METHODS

2.1 | Site characteristics

This study uses field data from Amazon forest sites of the Global 
Ecosystem Monitoring network (GEM; Malhi et al., 2015). We focus 
on seven 1 ha permanent sample plots along moisture stress gradi-
ents in the east and west Amazon, distributed across four locations 
(Table 1). Moisture stress across plots is quantified using maximum 
climatological water deficit (MCWD), a measure of seasonal water 
deficit where more negative values relate to larger water deficit, and 
potentially greater moisture stress (the focal MCWD gradient spans 
−86 to −498 mm; see Data S1, for MCWD equation). Soil and species 
composition differs between localised plots, with little evidence of 
anthropogenic disturbance (Malhi et al., 2015). A short description 
of each plot is given here, with further details on site characteris-
tics available in Aragao et al. (2009), Doughty et al. (2015), Quesada 
et al.  (2012), Metcalfe et al.  (2010), Araujo-Murakami et al.  (2014), 
Malhi et al. (2014, 2015) and Rocha et al. (2014).

Core terra-firme Amazon forest plots, CAX04 and CAX06 are 
located in the Caxiuanã National Forest in Para State, Brazil and 
occupy the least moisture stressed zone of the gradient (MCWD 
−86 mm). TAM05 and TAM06, located in the Tambopata Biological 
Reserve in the Madre de Dios region of Peru, are subject to a mod-
erate dry season (MCWD −256  mm). Transitional forest plots—
KEN01 and KEN02—are situated in the Hacienda Kenia in Guarayos 
Province, Santa Cruz, Bolivia, and are subject to a more intense dry 
season (MCWD −342 mm). The Tanguro plot, located in the Fazenda 
Tanguro, Mato Grosso State, Brazil, occupies the highest moisture 
stress zone along the gradient (MCWD −498 mm).

2.2 | LAI and leaf trait dynamics across the soil 
moisture gradient

We used linear regression models to provide an overview of the spa-
tial covariation of observed annual mean LAI, LAI seasonality and 
leaf traits across the MCWD gradient (see Data S1, for full details on 
LAI and leaf trait measurements). In the analysis, we also included 
precipitation seasonality (%) as a characteristic of precipitation re-
gime (see Section 2.5 for calculation).

2.3 | The Soil-Plant-Atmosphere model

SPA is a process-based hydrodynamic, terrestrial ecosystem model 
(Williams et  al.,  1996), which has previously been calibrated and 
evaluated against measured C and water fluxes for moist tropical 
forests in Caxiuanã (eastern Amazon) and Manaus (central Amazon; 
Fisher et  al.,  2007; Williams et  al.,  1998). The pathways through 
which soil moisture LAI, and leaf traits impact C assimilation and 
leaf C costs (i.e. NCE) in SPA are summarised in Figure 2, and are 
described below.

SPA simulates the vertical distribution of canopy layer-specific 
energy-balance, heat and mass exchange, including photosynthesis 
and transpiration for up to 10 canopy layers (Bonan et  al.,  2014; 
Williams et  al.,  1996). Each canopy layer in SPA is further parti-
tioned between sunlit and shaded fractions. The radiative transfer 
scheme determines the canopy interception of radiation (follow-
ing Beer–Lambert's law) and its subsequent transmittance, reflec-
tance and absorption of long wave, near infra-red and direct and 
diffuse photosynthetically active radiation for each canopy layer 
and the soil surface (Williams et  al.,  1998). The long wave radia-
tion balance is updated by the impact of the soil and canopy en-
ergy balance on temperature (Smallman et  al.,  2013). Boundary 
layer exchange is subject to the decay of wind speed above and 
within the canopy profile modified by the impact of the surface 
energy balance on turbulent exchange (Smallman et al., 2013). The 
vertical distribution of N within the canopy is represented as an 

TA B L E  1   Environmental characteristics summary of GEM network Amazon permanent sample plots (Malhi et al., 2015). Climate 
measures including maximum climatological water deficit (MCWD) are derived from local weather station data gap filled with ERA interim 
data for the years 2009–2010 (Dee et al., 2011)

Caxiuanã 
Control

Caxiuanã 
Tower Tambopata V Tambopata VI Kenia Wet Kenia Dry Tanguro

RAINFOR site code CAX04 CAX06 TAM05 TAM06 KEN01 KEN02 —

Latitude (°N) −1.716 −1.737 −12.831 −12.839 −16.016 −16.016 −13.077

Longitude (°E) −51.457 −51.462 −69.271 −69.296 −62.73 −62.73 52.386

MCWD (mm) −85.5 −85.5 −256.2 −256.2 −342.3 −342.3 −498.1

Precipitation  
seasonality (%)

166.1 166.1 287.9 287.9 391.2 391.2 126.8

Soil type Vetic Acrisol Ferralsol Cambisol Alisol Cambisol Cambisol Ferralsol

Sand (%) 83.69 32.54 40 2 58.05 55.48 45.73

Clay (%) 10.68 53.76 44 46 19.13 18.25 48.9
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exponential decay function (Williams et al., 1996). At the leaf level, 
the Farquhar model is used to determine photosynthesis (Farquhar 
& Von Caemmerer, 1982). The Penman–Monteith equation is used 
to estimate transpiration.

SPA simulates leaf-level C and water fluxes through eco-physio-
logical principles governing stomatal opening, balancing atmospheric 
demand for water and available supply from the soil to optimise 
photosynthesis (Bonan et  al.,  2014; Smallman et  al.,  2013; Williams 
et al., 1996, 2001). The stomatal conductance model in SPA optimises 
leaf C gain per unit N within the limits of water supply, therefore pre-
venting leaf water potential dropping below a critical value. The model 
thereby combines an intrinsic water use efficiency and hydraulic safety, 
to optimise simulated stomatal conductance (Bonan et al., 2014; Fisher 
et  al.,  2006). The rate of liquid phase supply is dependent on plant 
water storage, soil water potential and soil-to-leaf hydraulic resistance 
(Williams et al., 1996, 2001). In SPA, sap flow is buffered by stored 
plant water. Simulated soil water inputs via precipitation account 
for canopy interception, and subsequent evaporation and drainage. 
Soil water retention curves then relate soil texture to water transfer 
through the soil profile (Saxton et al., 1986). Soil water content and 
soil radiation balance is used to calculate water evaporation from the 
soil surface (Amthor et al., 1994). Root water uptake is computed as a 
function of root dimensions (surface area, biomass and depth) and soil 
hydraulic conductivity. Root resistivity and root biomass per unit soil 
volume determine root-to-stem conductance (Williams et  al.,  2001). 
Aboveground hydraulic conductance is calculated assuming resistance 
to xylem water supply increases with the height of the canopy layer 

(Williams et al., 1996). As in a pipe model, each canopy layer has an 
independent water supply system.

Phenology in this application of SPA was forced using LAI 
timeseries (Figure 2). Foliar C stocks at a given timestep were com-
puted as a function of LAI and leaf C per unit area (see Data S1 for 
equations). Leaf NPP was calculated as the difference between the 
foliar C stock of the current timestep and that of the previous time-
step following leaf litterfall. Leaf NPP was determined prior to other 
plant NPP components. Where the leaf NPP requirement exceeded 
total NPP for the given timestep, the non-structural C (NSC) pool was 
drawn upon. When the NSC pool became depleted, a fraction of NPP 
was redirected towards NSC storage in subsequent timesteps when 
leaf NPP did not exceed total NPP. Leaf litterfall in SPA was simulated 
as a function of day of peak leaf fall, leaf fall period and potential leaf 
lifespan (see Data S1 for equations). The parameters were calibrated 
against plot litterfall data. Where leaf litterfall was insufficient to sup-
port a decline in forced LAI across two timesteps, the deficit was added 
to the leaf litterfall pool. When not forced with in-situ LAI, the capacity 
of SPA to simulate canopy dynamics has been demonstrated by both 
López-Blanco et al. (2018) and Sus et al. (2010).

Root and wood C allocation and turnover is simulated by the sub 
model DALEC2 (Bloom & Williams, 2015). Following the subtraction 
of foliar NPP from the total NPP pool, the remaining NPP was dis-
tributed between roots and wood as a function of fixed, plot-specific 
allocation fractions. Root and wood turnover was simulated as a func-
tion of component C stock using a fixed, plot-specific turnover rate 
parameter.

Autotrophic respiration in SPA was computed on a mass basis. 
Leaf respiration was calculated as a function of leaf N content (Flack-
Prain et al., 2019; Reich et al., 2008) and total leaf C stock (see Data 
S1). Wood and fine root maintenance respiration were estimated as a 
function of component C stock and a respiration coefficient parame-
ter. When calculating wood respiration, there was no distinction be-
tween sapwood and heartwood. Growth respiration was calculated as 
a fixed proportion of NPP (0.28; Waring & Schlesinger, 1985). Within 
SPA, C allocation to respiration was executed before allocation to 
growth.

2.4 | Model set-up, calibration and evaluation

We used field estimates of plant traits, initial C stocks, soil texture, 
meteorology and LAI to drive SPA (Figure 2) at each permanent sam-
ple plot across the GEM network (see Data S1). Specifically, the model 
was parameterised using local estimates of: soil texture, soil C stock, 
leaf N content, LMA, photosynthetic capacity (κc, and κJ; Vcmax and Jmax 
normalised by leaf N content, respectively), the fraction of NPP allo-
cated to fine roots and wood, root depth, foliar, wood and fine root C 
stocks, and wood and fine root respiration coefficients. Fine root and 
wood turnover rates were assumed proportional to component NPP 
(given the maturity of stands and their disturbance history). Wood 
and root respiration measurements were used together with com-
ponent C stocks to estimate plot-specific wood and root respiration 

F I G U R E  2   A summary of the pathways through which key leaf-
level traits, leaf area index timeseries (LAIt), meteorology and soil 
properties constrain C and water fluxes in Soil-Plant-Atmosphere 
model. Model inputs derived from field measurements are 
presented in red. Dashed boxes identify model-calibrated values. 
Green dotted circles highlight model values which determine total 
C assimilation, the C cost of leaf growth and maintenance, and 
phenology (where NCE = GPP – NPPLeaf – RMLeaf − RGLeaf). The 
joining together of multiple arrows indicates a collective impact. 
CLeaf, leaf C stock; CRoot, fine root C stock; GPP, gross primary 
productivity; leaf N, leaf nitrogen content; LitterfallLeaf, leaf litterfall; 
LMA, leaf mass per unit area; NPPLeaf, leaf net primary productivity; 
NPPRoot, fine root net primary productivity; NPPTotal, total net 
primary productivity; RGLeaf, leaf growth respiration; RMLeaf, leaf 
maintenance respiration; κc and κ j, Vcmax and Jmax normalised by leaf 
nitrogen content respectively (i.e. photosynthetic capacity) 
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coefficients. SPA hydraulic conductance parameters derived from de-
tailed field measurements at an Amazon moist forest site were used 
in model runs for all plots (Fisher et al., 2006, 2007; Rowland, Harper, 
et  al.,  2015). Hydraulic conductance parameters include stem con-
ductance, minimum leaf water potential, intrinsic water use efficiency, 
leaf capacitance and root resistivity. Hourly meteorological forcing 
data were supplied from weather stations located within 1 km of the 
study plots. Data gaps in air temperature, wind speed, shortwave ra-
diation and vapour pressure deficit records which were less than six 
consecutive hours were estimated by spline interpolation. Data gaps 
greater than 6 hr, or gaps in precipitation measurements were filled 
using hourly spline-interpolated and bias corrected ERA-Interim data 
(Dee et al., 2011). Solar zenith angle was accounted for when interpo-
lating solar radiation values. Monthly LAI measurements were scaled 
to daily estimates via linear interpolation to force simulated LAI.

Timeseries field measurements of soil moisture and leaf litterfall 
were used to calibrate simulated soil water drainage parameters and 
leaf fall parameters respectively. Within SPA, the empirical model 
used to simulate soil hydraulics (Saxton et  al.,  1986, equation 10) 
was calibrated by adjusting the slope of the interaction between soil 
texture and water retention, to reflect tropical soil moisture dynam-
ics (to within standard error estimates of annual mean soil moisture). 
Modelled leaf litterfall was calibrated to accurately simulate litterfall 
period and amplitude (within standard error estimates of annual lit-
terfall), using field measurements to retrieve model parameters on 
leaf fall timing, duration and potential leaf lifespan (Table 2).

SPA was evaluated against independent field estimates of an-
nual ecosystem C fluxes, including NPP, GPP, NCE and autotrophic 
respiration. Total NPP and autotrophic respiration were calculated 
as the sum of measured leaf, root and wood NPP and respiration 
respectively. GPP was calculated as the sum of total measured NPP 
and autotrophic respiration, and NCE was calculated as the sum of 
measured root and wood NPP and respiration (i.e. GPP minus leaf 
NPP and respiration).

The calculation of model uncertainty as a result of parameter 
error was limited to that associated with LAI estimates, as the avail-
ability of uncertainty estimates for leaf traits and rooting properties 
was plot-dependent, and there were no uncertainty estimates for 
hourly meteorological data or soil properties. Model uncertainty es-
timates were calculated by simulating C fluxes for each plot under 
the upper and lower standard error of monthly LAI field measure-
ments. Following model calibration, simulated C fluxes were eval-
uated against field estimates of GPP, respiration and NPP, using 
linear regression models. Field estimates were derived from a suite 
of biometric timeseries measurements including dendrometers, root 
ingrowth cores, infra-red gas analysers and litterfall traps (Doughty 
et al., 2015), further details of which can be found in Data S1.

2.5 | Modelling C cycle sensitivity to LAI and soil 
moisture stress interactions

We tested whether the maximisation of NCE explained observed mean 
LAI and LAI seasonality across the MCWD gradient. We forced the 
model at each plot using a suite of synthetic LAI timeseries, and re-
trieved the resultant C budget. For each plot, during model experiments, 
meteorology, soil texture, the fraction of NPP allocated to wood and 
roots (following leaf NPP allocation), initial C stocks and leaf traits were 
kept constant. To generate the synthetic LAI timeseries, we systemati-
cally varied mean LAI (Figure S2) and LAI seasonality (Figure S3) against 
the observation data at each plot. First, to vary mean LAI, for each plot, 
we adjusted the annual mean to between 1 and 8 m2/m2 at 0.5 m2/m2 
intervals, conserving the nominal seasonal cycle (n = 105; 7 plots × 15 
synthetic LAI timeseries). Second, we constructed synthetic LAI time-
series for each plot (n = 63; 7 plots × 9 synthetic LAI timeseries), which 
conserved nominal mean LAI, but varied LAI seasonality (Table S2).

The timing of LAImin in the synthetic LAI timeseries were aligned 
with seasonal lows in the observation dataset. LAI seasonality (LAIs; 

TA B L E  2   Mean leaf area index (LAI), LAI seasonality and leaf traits (leaf N content, photosynthetic capacity κc, κJ and leaf mass per unit 
area [LMA]) used to parameterise Soil-Plant-Atmosphere model (SPA), and SPA-calibrated leaf litterfall parameters (leaf fall day, leaf lifespan 
and leaf fall period) for Amazon permanent sample plots. Leaf fall day is the day of year leaf fall is initiated, leaf lifespan reflects potential 
lifespan of leaves and leaf fall period is the number of days over which leaf fall occurs. Leaf litterfall parameters were calibrated against GEM 
field estimates

Field-measured parameters Calibrated parameters

Annual mean 
LAI (m2/m2)

LAI seasonality 
(%)

Leaf N 
content 
(mg/g)

κc  
(μmol C g 
N−1 s−1)

κJ  
(μmol C g 
N−1 s−1)

LMA  
(g/m2)

Leaf fall day 
(day of year)

Leaf 
lifespan 
(years)

Leaf fall 
period (days)

CAX04 5.0 0.2 19.6 15.4 27.7 93.0 210 3 150

CAX06 5.2 2.2 24.3 13.2 23.8 87.4 190 1.45 100

TAM05 4.9 4.9 24.0 28.9 49.9 101.0 220 1.3 130

TAM06 4.6 8.9 24.8 29.0 50.3 96.0 230 1.42 100

KEN01 2.8 14.1 40.4 29.3 51.6 52.5 200 1.05 100

KEN02 2.2 18.4 55.3 28.9 50.3 41.8 180 1.01 100

Tanguro 4.1 1.6 31.2 30.0 53.1 64.4 180 1.04 120
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%), was calculated as the average difference between monthly LAI 
and the annual mean:

where LAIi is LAI for a given month, LAI is nominal mean LAI, and 
n is the number of months in the timeseries. Estimates of local pre-
cipitation seasonality (used in regression analyses to relate LAI and 
leaf trait distributions to precipitation regime) were calculated using 
an analogous equation, where LAIi was substituted for precipita-
tion in a given month, and LAI was substituted for mean monthly  
precipitation.

For each LAI timeseries (observed or synthetic), model simu-
lations were run using local climate data, allowing sufficient itera-
tions for C cycle feedbacks on component C pools to reach steady 
state (300 years). We computed the interaction between C assim-
ilation, the C cost of leaf growth and maintenance (i.e. GPP and 
NCE), and mean LAI/LAI seasonality for each plot. We compared 
nominal annual mean LAI to that under the simulated maximum 
NCE. We then compared field-estimated and model-simulated 
NCE under nominal LAI, to the maximum simulated NCE retrieved 
from synthetic LAI timeseries runs (for mean LAI and LAI season-
ality). Field-estimated error was the propagated standard error of 
components (i.e. GPP, leaf NPP and leaf respiration). Optimal mean 
LAI and LAI seasonality was defined as that which maximised NCE 
under the plot conditions.

2.6 | Leaf trait interactions with NCE along soil 
moisture gradients

We tested the impact of leaf traits on optimal LAI across the 
MCWD gradient. We focused on exploring the extremes of the 
moisture gradient, choosing plots with typically drier (KEN02) and 
moister (CAX04) climate and soils to simplify the analysis. We used 
the fast leaf traits observed at the drier KEN02 plot (i.e. short leaf 
lifespan, low LMA, high photosynthetic capacity and high meta-
bolic rate), and the slow leaf traits nominal at the moister CAX04 
plot (i.e. long leaf lifespan, high LMA, low photosynthetic capac-
ity and low metabolic rate; Table 2), to construct model forcings 
for a fast and slow leaf trait cohort. At both plots, we forced the 
model with the fast and slow leaf trait cohort, under the suite of 
synthetic LAI timeseries outlined in the previous section (n = 100; 
for mean LAI 2 plots × 15 synthetic LAI timeseries × 2 leaf trait 
strategies, plus for LAI seasonality, 2 plots  ×  10 synthetic LAI 
timeseries × 2 leaf trait strategies) and retrieved simulated NCE. 
As before, for each plot, we kept meteorology, soil texture, the 
fraction of NPP allocated to wood and roots, and initial C stocks 
constant. We compared the interaction between NCE and mean 
LAI/LAI seasonality, under the different leaf trait cohorts, on drier 
and moister soils. We then contrasted field-estimated and model-
simulated NCE under nominal LAI leaf trait distributions, to the 

maximum simulated NCE retrieved from synthetic LAI leaf trait 
runs.

3  | RESULTS

3.1 | Model calibration and evaluation

SPA was calibrated to effectively simulate soil moisture and leaf 
litterfall variation and dynamics across sites (Table  3; Figure  3; 
Figure  S5). SPA-simulated GPP was within field estimate error 
bounds for five of the seven plots (Figure  S5; the disparity be-
tween error bounds for the remaining two plots was marginal at 
115 and 50  gC  m−2  year−1 for KEN01 and TAM06, respectively). 
The GPP-MCWD interaction was consistent between simulated 
GPP and estimates derived from field measurements (slope of 
GPP  ~  MCWD interaction; SPA  =  2.4  ±  0.8; GEM  =  2.0  ±  0.9). 
Modelled and observed NCE were significantly correlated across 
plots (R2 = .62, p = .04). A breakdown of model performance with 
respect to leaf, root and wood NPP and respiration, is described in 
Flack-Prain et al. (2019). Model calibration and evaluation results 
are presented in full in Data S1.

3.2 | LAI and leaf traits trends along the 
MCWD gradient

Canopy and leaf level properties co-varied across the MCWD 
gradient (Figure  S6; Table  4). Mean annual LAI decreased as 

(2)
LAIs=

∑n

i=1

��
�
LAIi−LAI

��
�

LAI
. 100

n
,

TA B L E  3   Model calibration and evaluation performance for 
permanent sample plots across an Amazon mean maximum 
climatological water deficit gradient. Soil-Plant-Atmosphere 
model forced with observed leaf area index, calibrated using field 
estimates of leaf litterfall and soil moisture, and evaluated against 
annual net primary productivity (NPP), gross primary productivity 
(GPP) and autotrophic respiration. We compare modelled 
values to field estimates of C fluxes to derive the coefficient of 
determination, p-value and the normalised root mean square 
error

R2 p
RMSE 
(%)

Evaluation

GPP .36 .15 11.2

Ra .59 .04 12.2

NPP .38 .14 12.0

NCE .62 .04 12.8

Calibration

Leaf litterfall .99 <.001 2.8

Litterfall range .54 .009 23.8

Litterfall peak timing .96 <.001 7.1

Soil moisture range .35 .21 14.7

Soil moisture peak timing .98 <.001 10.6
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precipitation seasonality increased (R2  =  .57, p  =  .05). LAI sea-
sonality increased in line with precipitation seasonality (R2 =  .87, 
p =  .002). Congruously, a significant negative interaction existed 
between mean annual LAI and LAI seasonality (R2 = .79, p = .008). 
Across the canopy-to-leaf scale, mean annual LAI increased sig-
nificantly with LMA (R2 = .86, p = .002). Mass based foliar N con-
tent decreased significantly with mean annual LAI, and increased 
significantly with LAI seasonality (R2 = .92, p < .001 and R2 = .77, 
p = .009 respectively). At the leaf-level, a significant negative cor-
relation existed between LMA and mass based foliar N content 
(R2 =  .85, p =  .003). Correspondingly, mass based foliar N exhib-
ited a significant negative correlation with calibrated leaf lifespan 
(R2 = .57, p = .05).

3.3 | Impact of mean LAI on NCE trade-offs 
across the soil moisture gradient

As a result of leaf C cost and C assimilation trade-offs, high mean 
LAI was economically deleterious within the model experiment for 
forest plots occupying drier soils, but remunerative for those oc-
cupying moister soils (Figure 4). Simulated leaf C costs (via growth 
and maintenance) increased linearly with mean LAI. In contrast, 

simulated GPP increased with mean LAI for five of the seven plots. 
The rate of GPP increase slowed as mean LAI increased (Figure 4). At 
Tanguro and KEN02 (which occupy drier soils), GPP did not increase 
with mean LAI beyond an upper limit (5.5–6.0 m2/m2); at higher LAI, 
GPP declined towards zero. The modelled decline of GPP to zero was 
due to reduced C availability for non-foliar growth (at high mean LAI) 
leading to an eventual collapse in fine root biomass stocks, whereby 
canopy function was no longer supported. The simulated response 
of leaf C costs and C assimilation to mean LAI caused NCE to be pro-
gressively reduced at high mean LAI as soil moisture stress strength-
ened. Consequently, simulated optimal mean LAI (i.e. LAI at which 
NCE was maximised; LAIOpt) declined as moisture stress increased 
(Figure 5a; mean LAIOpt ~ MCWD R2 = .72, p = .02).

F I G U R E  3   Field-estimated monthly leaf area index, leaf litterfall 
(GEM) and standard error, compared with Soil-Plant-Atmosphere 
model (SPA) simulated leaf litterfall for seven plots at four locations 
across the Amazon basin. SPA leaf litterfall was calibrated against 
GEM estimates to derive three fixed model drivers relating to the 
leaf cycle (peak leaf fall timing, leaf fall period and leaf lifespan). 
GEM leaf litterfall data were available for 2009–2010 for CAX04, 
CAX06, TAM05, TAM06 and for 2010 only for KEN01, KEN02 and 
Tanguro. R2, p-value and RMSE estimates presented are derived 
from linear regressions between monthly GEM measurements and 
SPA simulations

TA B L E  4   Linear regression analyses on the interaction between 
maximum climatological water deficit (MCWD), precipitation 
seasonality and in-situ measurements of mean leaf area index 
(LAI), LAI seasonality, leaf N content, leaf mass per unit area (LMA) 
and calibrated leaf lifespan across Amazon permanent sample 
plots

Interaction Slope R2 p-value

Mean Annual LAI ~ MCWD + .35 .16

Mean Annual LAI ~ Precipitation 
Seasonality

− .57 .05

LAI Seasonality ~ MCWD − .13 .42

LAI Seasonality ~ Precipitation 
Seasonality

+ .87 .002

Mean Annual LAI ~ LAI  
Seasonality

− .79 .008

LMA ~ MCWD + .37 .15

LMA ~ Precipitation Seasonality − .23 .27

LMA ~ Mean Annual LAI + .86 .002

LMA ~ LAI Seasonality − .49 .08

LMA ~ Foliar N Content − .85 .003

LMA ~ Calibrated Leaf Lifespan 
(log-log)

+ .39 .14

Foliar N Content ~ MCWD − .29 .21

Foliar N Content ~ Precipitation 
Seasonality

+ .49 .08

Foliar N Content ~ Mean Annual 
LAI

− .92 <.001

Foliar N Content ~ LAI  
Seasonality

+ .77 .009

Foliar N Content ~ Calibrated  
Leaf Lifespan (log-log)

− .57 .05

Calibrated Leaf Lifespan ~  
MCWD

+ .49 .08

Calibrated Leaf 
Lifespan ~ Precipitation 
Seasonality

− .20 .31

Calibrated Leaf Lifespan ~ Mean 
Annual LAI

+ .28 .23

Calibrated Leaf Lifespan ~ LAI 
Seasonality

− .30 .20
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3.4 | Consistency between in situ LAI 
measurements and optimality-based predictions from 
mean LAI experiment

In situ measured LAI (LAIfield) maximised NCE without matching pre-
dicted optimal mean LAI (Figure 5a). Field measurements of NCE cor-
related significantly with simulated optimal NCE (NCEOpt; Figure 6; 
R2 =  .83, p =  .004). Modelled NCE when SPA was forced with ob-
served LAI was also consistent with NCEOpt (R

2 = .94, p < .001). Yet, 

LAIfield did not correlate significantly with simulated mean LAIOpt 
(mean LAIOpt ~ LAIfield R2 = .29, p = .21). Across the moisture stress 
gradient, predicted mean LAIOpt was 22.6% higher than LAIfield. 
Simulated mean LAIOpt was within field observation error at three 
out of seven plots. In-situ measurements of LAI were simultaneously 
consistent with optimality-based predictions (i.e. maximised NCE), 
but inconsistent with predicted optimal LAI, because of the asymp-
totic response of simulated NCE to mean LAI over 1–2 m2/m2 differ-
ences in leaf cover (Figure 4).

F I G U R E  4   Model-simulated net 
canopy C export (NCE), gross primary 
productivity (GPP) and leaf growth and 
maintenance C costs, for each plot along 
an Amazon maximum climatological water 
deficit gradient, forced with synthetic 
leaf area index (LAI) timeseries ranging 
in mean LAI. Data points are field 
estimates of NCE, GPP and leaf growth 
and maintenance. Error bars show the 
propagated error of summed components

F I G U R E  5   The interaction between 
maximum climatological water deficit 
and simulated optimal (i.e. that which 
maximises net canopy C export) and 
observed (i.e. field-measured) mean 
annual leaf area index (LAI) (a) and LAI 
seasonality (b) 
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3.5 | Impact of LAI seasonality on NCE trade-offs 
across the soil moisture gradient

Trade-offs between leaf C costs and C assimilation resulted in sea-
sonal LAI being deleterious within model simulations for forests oc-
cupying moister soils (Figure 6). However, for forests occupying drier 

soils, a wide range of LAI seasonalities proved equally optimal. For 
forest plots occupying moister soils, simulated GPP declined with 
increasing LAI seasonality (Figure 7). For forest plots occupying drier 
soils, simulated GPP reached an asymptote across LAI seasonalities 
of between 0% and 40%, declining thereafter. Across all plots, the 
modelled C cost of leaf growth and maintenance increased with LAI 

F I G U R E  6   A comparison of maximum simulated net canopy C export (NCE) forced with synthetic leaf area index (LAI) timeseries ranging 
in mean LAI against (a) field-estimated NCE, and (b) Soil-Plant-Atmosphere model (SPA) simulated NCE under nominal LAI. SPA error bars 
represent simulated NCE and gross primary productivity under field-measured LAI standard error. GEM error bars represent propagated 
error for summed field estimates of component net primary productivity and respiration. The dashed line is the 1:1 and the solid line is the 
linear regression between NCE estimates

F I G U R E  7   Model-simulated net 
canopy C export (NCE), gross primary 
productivity (GPP) and leaf growth and 
maintenance, for each plot along an 
Amazon maximum climatological water 
deficit gradient, forced with synthetic 
leaf area index (LAI) timeseries ranging 
in LAI seasonality. Data points are field 
estimates of NCE, GPP and leaf growth 
and maintenance. Error bars show the 
propagated error of summed components
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seasonality. However, the slope of the leaf C cost LAI seasonality 
interaction was reduced for drier plots. At low moisture stress, the 
response of leaf C costs and C assimilation to LAI seasonality caused 
simulated NCE to decline with increasing LAI seasonality. At high 
moisture stress, simulated NCE varied little across a range of LAI 
seasonalities before declining. As a result, simulated optimal LAI sea-
sonality increased significantly with moisture stress (LAIOpt season-
ality ~ MCWD R2 = .61, p = .04; Figure 5b).

3.6 | Consistency between in situ LAI 
measurements and optimality-based predictions from 
LAI seasonality experiment

Akin to trends in mean LAI, field-measured LAI seasonality max-
imised NCE, but did not match the predicted optimal LAI sea-
sonality. Across the moisture stress gradient, NCEfield correlated 
significantly with predicted NCEOpt (NCEOpt  ~  NCEfield R2  =  .60, 
p  =  .04, RMSE  =  257.5  gC  m−2  year−1, bias  =  6.5%). Modelled 
NCE when SPA was forced with observed LAI was also consist-
ent with predicted NCEOpt (NCEOpt  ~  NCESPA R2  =  .98, p  <  .001, 
RMSE  =  43.1  gC  m−2  year−1, bias  =  1.2%). LAIfield seasonality did 
not correlate significantly with simulated LAIOpt seasonality (LAIOpt 
seasonality ~ LAIfield seasonality R2 =  .08, p =  .5). As before, field-
measured LAI seasonality supported optimal NCE without match-
ing the simulated optimal LAI seasonality, because of the asymptotic 
response of simulated NCE across a range of LAI seasonalities 
(Figure 7).

3.7 | Leaf trait interactions with the NCE along the 
soil moisture gradient

Slow leaf traits were optimal (i.e. maximised simulated NCE) under 
high mean LAI, while fast leaf traits were optimal under low mean 
LAI (Figure 8). Simulated LAIOpt was 2.5 m2/m2 higher under slow 
leaf traits compared to fast leaf traits, independent of moisture 
stress (Figure 8 upper panels). Under high moisture stress, slow leaf 
traits outperformed fast leaf traits (with respect to simulated NCE 
maximisation) for LAI > 4 m2/m2. The transition point increased to 
~5.5 m2/m2 under low moisture stress. When the model was forced 
with local, observed LAI at the low moisture stress plot, there was no 
significant difference in simulated NCE between nominal-slow and 
alternate fast leaf traits (nominal-slow 2,709 ± 301 gC m−2 year−1; 
alternate fast 2,846  ±  73  gC  m−2  year−1). Under high moisture 
stress, when the model was forced with observed LAI, NCE was 
33% higher for nominal-fast traits compared to alternate slow 
leaf traits (nominal-fast 1,647  ±  41  gC  m−2  year−1; alternate slow 
1,238 ± 57 gC m−2 year−1). The interaction between optimal leaf trait 
strategy and mean LAI matched the observed coordination between 
leaf and canopy properties across the moisture stress gradient.

Under high moisture stress, fast leaf traits were optimal 
across a range of LAI seasonalities (Figure 8). Under low moisture 

stress, aseasonal LAI was optimal regardless of leaf trait strategy. 
At the drier forest plot, fast leaf traits generated stable simulated 
NCE across LAI seasonalities of 0%–25%, declining thereafter. 
At the moister forest plot, simulated NCE was maximised under 
aseasonal LAI; at 0% LAI seasonality under fast leaf traits; and at 
0.17% LAI seasonality under slow leaf traits. Under high mois-
ture stress, simulated LAIOpt seasonality was 22% under fast leaf 
traits, which is close to LAIfield seasonality at 18%. Similarly, under 
low moisture stress, simulated LAIOpt seasonality was 0.17% 
under slow leaf traits which matches observed LAIfield seasonality 
at 0.2%.

4  | DISCUSSION

Our aim was to test if key ecosystem properties (i.e. LAI dynam-
ics and leaf trait suites) along a tropical forest MCWD gradient 
could be predicted using an optimality-based approach. We com-
puted the sensitivity of NCE (representing C economic trade-offs, 

F I G U R E  8   Simulated net canopy C export (NCE) for Amazon 
forest plots under low (CAX04) and high (KEN02) moisture stress, 
forced with synthetic leaf area index (LAI) timeseries ranging 
in mean LAI (top panels) and LAI seasonality (bottom panels) 
under fast (black) and slow (blue) leaf traits. Data points are field 
estimates of mean LAI/LAI seasonality and NCE. Vertical error bars 
show the propagated error of summed components. Horizontal 
error bars show LAI standard error
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i.e. C assimilation minus leaf growth and maintenance C costs) to 
moisture stress across a spectrum of LAI strategies using a de-
tailed process based model of C uptake, allocation and turnover. 
As moisture stress increases, optimal mean LAI (i.e. that which 
maximised NCE) decreases, and optimal LAI seasonality increases. 
However, an asymptotic response of NCE to mean LAI and LAI 
seasonality limits the predictive power of an optimality-based 
approach (Figure  4); optimal LAI estimates do not match in-situ 
observations closely. We went further, to evaluate the sensitivity 
of C cycle dynamics to coincident variation in leaf traits, LAI and 
moisture stress. For forest plots occupying moister soils, slow leaf 
traits (i.e. long leaf lifespan, high LMA, low photosynthetic capac-
ity and low metabolic rate) are optimal under aseasonal, high LAI. 
For forest plots occupying drier soils, fast leaf traits (i.e. short leaf 
lifespan, low LMA, high photosynthetic capacity and high meta-
bolic rate) are optimal under low LAI (across LAI seasonalities of 
0%–20%). Predicted optimal combinations of mean LAI, LAI sea-
sonality and leaf traits reflect observed dynamics across the mois-
ture stress gradient.

4.1 | Divergence in canopy economics across the 
MCWD gradient drives optimal LAI

Model experiments indicated that at the drier end of the mois-
ture gradient high LAI canopies are economically unfavourable 
(Figure 4). Any C gains (via photosynthesis) from additional leaf area 
are outweighed by the increase in leaf growth and maintenance C 
costs. Thus, consistent with our hypothesis, simulated NCE was 
maximised in drier forests by seasonal, low mean LAI (Figures  4 
and 5). Under moister conditions, simulated NCE was maximised 
by aseasonal, high mean LAI. Photosynthetic gains are maintained 
with high LAI canopies, and are economical, as soil moisture is a less 
limiting factor.

4.2 | Maximisation of NCE does not predict in-
situ LAI

As hypothesised, in-situ LAI measurements maximise NCE and are 
therefore consistent with optimality-based predictions (Figure  6). 
Yet, simulated optimal LAI is a relatively poor predictor of observed 
LAI dynamics (Figure 5). Simulated NCE responds asymptotically to 
changes in LAI seasonality at drier plots (Figure  7), and mean LAI 
(Figure 4). For example, NCE can vary little across a mean LAI range 
of c. 2  m2/m2 and a LAI seasonality range of up to 40% because 
of the complex trade-offs in the C economy linked to structural-
functional interactions. This low sensitivity allows a range of mean 
LAI/LAI seasonalities to be similarly economically viable. As a result, 
despite matching optimality-based predictions (i.e. maximising NCE), 
mean LAIfield is not itself predicted well purely by the maximisation 
of NCE. Additional constraints to LAIfield beyond C economics are 
then under-determined.

Nutrient limitation was not accounted for in this analysis, but 
could be the additional constraint needed to improve optimali-
ty-based LAI predictions. Where moisture stress is low, but nutrients 
are limited (i.e. Caxiuanã), optimal LAI exceeds in-situ measurements 
(Figure 4). Kumagai et al. (2006) report higher LAIs of up to 6.8 m2/
m2 (x = 6.2 m2/m2) in Bornean forests. Limited measurements indi-
cate that soil N and pH across the Lambir Hills region are higher than 
at the Caxiuanã plots, as is soil phosphorus (CAX04 only; Davies 
et al., 2005; Malhi et al., 2015; Quesada et al., 2010). Furthermore, 
field evidence shows that total leaf litterfall is positively associated 
with soil richness (Chave et al., 2010), and thus soil nutrient availabil-
ity is likely to have a determinate effect on LAI dynamics. We sug-
gest that foliar N and P demands may preclude otherwise optimal, 
higher LAI, in nutrient poor forests.

Alternatively, the disparity between predicted optimal LAI 
and in-situ LAI measurements could be a result of a focus solely 
on foliar investment. One hypothesis is that returns on canopy 
investment could decline relative to returns from investing in 
other tissues which support leaf function; for example, invest-
ment in roots for nutrient acquisition (e.g. Thomas & Williams, 
2014). The inclusion of investment returns across plant compo-
nents could potentially reduce the range of equally viable LAI 
dynamics under current model assumptions. Haverd et al. (2016) 
have demonstrated optimisation of above versus belowground 
allocation to capture canopy dynamics across an Australian pre-
cipitation gradient. Another hypothesis is that LAI optimisation 
is sensitive to a reduction in marginal return rate (i.e. as the rel-
ative increase in net C gain starts to decline, plants may cease 
allocation towards the canopy). Further investigation into the 
presented model simulations show that if a marginal return rate 
function is added, whereby LAI ceases to increase when NCE is 
within <100  gC  m−2  year−1 of the maximum, mean LAI is more 
successfully predicted (R2 =  .56, p =  .05, compared to simulated 
mean LAIOpt ~ LAIfield R2 = .29, p = .21).

Differences between simulated optimal LAI and observed LAI 
could also result from the radiative transfer scheme used. Braghiere 
et al. (2019) recently found that the inclusion of leaf clumping into the 
radiative transfer scheme alleviated light limitation in lower canopy 
layers, especially where LAI was high (i.e. in the tropics). GPP increased 
as a result. However, leaf clumping was not simulated within SPA as 
local clumping estimates are unavailable for this study. Further work 
could therefore usefully test the sensitivity of NCE and LAI optimality 
to radiative transfer schemes.

With respect to LAI seasonality, the viability of both seasonal 
and aseasonal LAI at drier forest plots is ecologically consistent 
with the expectation that high climatic seasonality promotes the 
coexistence of different LAI strategies (i.e. deciduous-evergreen; 
Sakschewski et  al.,  2015). Furthermore, it is also consistent with 
in-situ observations. For example, at the Kenia plots, both decid-
uous (e.g. Hura crepitans L.) and evergreen (e.g. Dendropanax arbo-
reus) species are present (Abelho et  al.,  2005; Figueroa-Esquivel 
et al., 2009; Poorter & Bongers, 2006). Given the interaction be-
tween LAI seasonality and leaf trait strategy, we might expect 
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community trait composition to also support a range of viable strat-
egies (see Section 4.5).

4.3 | Should optimisation of whole stand C 
dynamics predict in situ LAI?

In addition to asking why optimisation of whole stand NCE does 
not predict observed LAI, we ask whether indeed it should (Anten 
& During, 2011). To date, optimality-based ecosystem models and 
DGVMs have had varied success in predicting mean and seasonal 
LAI values that are consistent with field observations (De Kauwe 
et  al.,  2014; McMurtrie et  al.,  2008; Thomas & Williams,  2014; 
Walker, Hanson, et  al.,  2014), and efforts have typically focused 
on single, mono-specific stands. In a mixed-species forest, where a 
variety of plant strategies co-exist, LAI which exceeds the forest-
wide optimum would increase competitiveness in individual trees 
(Anten, 2016). van Loon et al.  (2014) demonstrated how the inclu-
sion of stem competition improved optimality-based predictions 
of LAI. However, given that in our study LAIfield was typically lower 
than simulated optimal LAI, including competition would not reduce 
the disparity between our optimality-based predictions and in-situ 
LAI measurements. Furthermore, the disparity between observed 
and simulated optimal LAI could be the result of our fitness proxy 
selection (Dewar et  al.,  2009). While NCE has proved a suitable 
measure of plant fitness elsewhere (McMurtrie & Dewar, 2011), it 
does not capture all aspects of plant fitness. It is possible that the 
appropriateness of NCE as a fitness proxy shifts as drought, nutrient 
limitation and disturbance increase, and plants must balance invest-
ment risk against shorter-term C gains.

4.4 | Leaf traits determine optimal LAI

Simulated optimal mean LAI is dependent on leaf traits. Within model 
experiments, independent of precipitation regime, fast leaf traits 
support low mean LAI, while slow leaf traits support high mean LAI 
(consistent with in-situ data; Figure 8; Table 2). As LAI increases, pho-
tosynthesis per unit leaf area declines. Consequently, under fast leaf 
traits, high respiratory C costs begin to outweigh C gains from high 
photosynthetic capacity. Conversely, lower respiratory C costs under 
slow leaf traits are sustainable as leaf area increases.

We show that leaf traits do not influence simulated optimal 
LAI seasonality at the moister forest plot where aseasonal LAI is 
most remunerative (Figure  8). However, at the drier forest plot, 
slow leaf traits are most remunerative under aseasonal LAI only, 
while fast leaf traits support a wider range of LAI seasonalities 
(0%–20%). Low leaf growth C costs and high photosynthetic ca-
pacity allow fast leaf traits to support different LAI seasonalities 
(though notably at low mean LAI). Slow leaf traits were unable to 
achieve the same viable range in LAI seasonality, as the increase in 
new leaf growth (following seasonal turnover) had a higher C cost 
(due to high LMA).

4.5 | Fast and slow leaf traits both maximise fitness 
in dry forest plots, but at different LAI

Model experiments, at drier forest plots, showed that fast and slow leaf 
trait strategies are equally viable, but at different mean LAI (Figure 8). 
These findings align with early conceptual approaches which used cost-
benefit analyses to demonstrate how links between leaf longevity and 
phenology in temperate forests support coexistence of evergreen and 
deciduous trees (Kikuzawa, 1991, 1996). Reporting on dry tropical ev-
ergreen and deciduous forests in Cambodia, Ito et  al.  (2007) focused 
on sites located within 15 km which were thus assumed to be under 
the same precipitation regime. The evergreen forest had a mean LAI of 
4.05 m2/m2, while the deciduous forest had a much lower mean LAI of 
0.88 m2/m2. The difference in LAI is similar to that reported in this study, 
between predicted optimal LAI under slow and fast leaf traits at the dry 
forest plot (~2.5  m2/m2). Our results are also consistent with that of 
Sakschewski et al. (2015), who predict that variability in plant strategies 
should be highest in drier, seasonal areas. Our findings suggest that trait 
trade-offs across the leaf economic spectrum offer alternative routes to 
viable strategies, supporting different forest types under similar climates.

4.6 | Leaf trait LAI dynamics are important to C 
cycling modelling

Our findings align with a growing body of evidence which demon-
strates the major role of leaf trait LAI dynamics in driving regional 
to global scale variation in C fluxes (Trugman, et al., 2019; Trugman, 
et  al.,  2019; Verheijen et  al.,  2013; Xu et  al.,  2016). We therefore 
highlight the importance of concerted efforts to collate canopy ag-
gregated leaf trait data (including LMA, photosynthetic rate, res-
piration rate and leaf lifespan) and to record these characteristics 
through the canopy profile and over full phenological cycles (Lloyd 
et al., 2010; Meir et al., 2002). Trait data need to be linked to LAI 
observations and scaled appropriately to understand their economic 
interactions and sensitivities.

4.7 | Limitations

We identify a number of limitations to our results including the ab-
sence of leaf age effects, the leaf respiration model used, uncertainty 
in LAI field estimates and lack of in situ data on the vertical profile 
of LAI within the canopy, except at a few tropical forest sites (Meir 
et al., 2000; Piayda et al., 2015). In addition, we recognise that by 
not including error associated with all model parameters, nor includ-
ing model structural error, the C flux uncertainty values presented 
in our analysis are likely underestimated. In particular, our assump-
tion of similar plant hydraulics across sites needs further exploration. 
These weaknesses can be addressed through concerted modelling 
and data collection exercises.

We do not simulate a leaf age effect on carboxylation and electron 
transport rates as to do so would have induced greater uncertainty 
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into our results. Wu et al. (2016) suggest that the interaction between 
leaf age and photosynthetic capacity reported for tropical forests 
(Kitajima et  al.,  1997, 2002; Xu et  al.,  2017), drives seasonal C flux 
dynamics. However, there were insufficient data currently to parame-
terise the leaf aging process across Amazon trees.

We recognise the limitations of the leaf maintenance respiration 
model used, namely that although based on biological reasoning, it 
is an empirical approach (scaling respiration from leaf N content as 
a function of temperature to estimate respiration), and that tropi-
cal trees accounted for only a small proportion of the data used to 
build the model (Reich et al., 2008). Other models relating leaf N 
content to respiration rate vary in their parameterisation and form 
(i.e. linear vs. the non-linear Reich model; Atkin et al., 2015; Meir 
et  al.,  2001; Ryan,  1991). It is vital to improve process modelling 
of autotrophic respiration, and to find ways to test scaling this leaf 
process to the canopy, and evaluate its climate sensitivity (Thomas 
et al., 2019).

While accounting for LAI sampling uncertainty in our results, 
there is a risk of measurement bias which could shift reported LAI 
trends, especially at higher leaf area (Bréda,  2003; Jonckheere 
et al., 2004; Weiss et al., 2004). However, our LAI estimates (from 
hemispherical photographs) align approximately with destruc-
tive sampling measurements from Amazon forests under a simi-
lar precipitation regime (Caxiuanã 5.11 ± 1.41 m2/m2, McWilliam 
et al. (1993), 5.7 ± 0.5 m2/m2; Araújo et al., 2002; Fisher et al., 2007) 
so bias effects are unlikely to be large enough to influence our con-
clusions. In addition, we note that by using linear interpolation to 
scale monthly LAI estimates to daily values, we may have intro-
duced some uncertainty into our results. However, we expect the 
effect to be minimal relative to the effect of in situ LAI estimate 
uncertainty.

The sensitivity of NCE to differences in the vertical distribution 
of LAI also remains uncertain. Within SPA, the default assumption is 
to uniformly distribute LAI over the canopy, as done here due to the 
lack of in-situ information. However, existing analysis of Amazonian 
forests have shown that the vertical profile of LAI can deviate signifi-
cantly from a uniform distribution potentially resulting in significant 
changes in light absorption and leaf ecophysiological properties (Meir 
et al., 2000; Stark et al., 2012), as also found in temperature forests 
(Kull et  al.,  1999). Stark et  al.  (2012) compared ground-based and 
airborne Lidar estimation of vertical canopy profile of LAI, demon-
strating the potential utility of airborne Lidar to resolve this current 
knowledge gap. An additional complication not yet addressed is that 
satellite and ground-based Lidar studies have presented evidence 
of divergent phenologies across different canopy layers (Smith 
et al., 2019; Tang & Dubayah, 2017).

5  | CONCLUSION

We assessed the potential for optimality-based approaches to im-
prove predictions of tropical LAI and reduce uncertainty in C flux es-
timates. Our results show that LAI variation across an Amazon-wide 

moisture stress gradient was optimal in terms of maximising NCE, 
but that the predictive power of this focused optimisation approach 
was limited with respect to LAI, as a range of LAI strategies could 
be equally economically viable. We also demonstrated how differ-
ent leaf trait strategies can support alternative LAI dynamics. Given 
the importance of leaf traits in shaping canopy dynamics, we further 
highlight the importance of mapping spatial, temporal and vertical 
leaf trait distributions via databases (such as the TRY trait database) 
and new remote-sensing approaches.
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