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1 | INTRODUCTION

Arctic ecosystems are at the forefront of global environmental
change, with temperatures rising at rates four times the global av-
erage (Box et al., 2019; Constable et al., 2022; Post et al., 2009;
Rantanen et al.,, 2022). Simultaneously, Arctic ecosystems are
affected by unprecedented declines in seabird populations of
approximately 70% between 1950 and 2010 globally (Paleczny
et al., 2015). Seabird declines are expected to continue, driven by
the combined impacts of invasive alien species, fisheries and cli-
mate change (Dias et al., 2019; Gibson et al., 2023; Will et al., 2020).
Both climate warming and reduced seabird populations can affect
biodiversity and the ecological functioning of terrestrial plant
communities across the Arctic tundra, as these changes alter key
environmental constraints regulating plant growth. Climate warm-
ing alleviates temperature limitation, leading to increased growth,
vegetation cover and a shift towards dominance of taller species
(Bjorkman et al., 2018; Myers-Smith et al., 2019). Less understood
is which consequences reduced transport of marine-derived nu-
trients as a result of declines in seabird populations will have for
otherwise nutrient-limited Arctic vegetation (Haag, 1974; Hobbie
etal.,, 2002).

In the Arctic, vegetation near colonies of nesting seabirds stands
out as green islands amidst otherwise barren landscapes. Near sea-
bird colonies, nutrients, such as nitrogen, and phosphorus are depos-
ited as droppings, feathers, egg shells and remains of deceased birds
(Anderson & Polis, 1999; Duda et al., 2020; Ellis, 2005; Gabrielsen
et al.,, 1991; Grant et al., 2022; Wojciechowska et al., 2015; Zwolicki
et al., 2013). Marine-derived nutrients are thus a supplementary
input to the terrestrial ecosystem and affect the distribution, succes-
sion, community composition and functional traits of Arctic plants
(Croll et al., 2005; Duda et al., 2020; Ellis, 2005; Grant et al., 2022;
Magnusson et al., 2014; Wojciechowska et al., 2015; Zwolicki
et al., 2016). Marine-derived nutrients impact across trophic levels,
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leaves and higher leaf nutrient contents. Enriched soil 8°N%o signatures at these
sites correlated with resource-acquisitive values of leaf area, specific leaf area,
leaf dry matter content, leaf phosphorous content and with enriched leaf §°N%o
signatures. This variation in leaf economic traits and isotopes was largely driven
by intraspecific variation at the nutrient gradient, whereas species turnover
dominated at the reference gradient.

4. Our results are consistent with marine-derived nutrient subsidies from seabirds being
a major driver of functional trait variation in Arctic vegetation. Ongoing declines in
seabird populations may therefore affect terrestrial primary producer communities
in the Arctic and beyond, with potentially important but unknown implications for

biodiversity, consumer and decomposer communities, and ecosystem processes.

Bjarndalen, intraspecific trait variation, nutrient enrichment, plant functional traits, seabirds,
species turnover, Svalbard

for example by decreasing the availability of preferred food for her-
bivores (Jakubas et al., 2008), and can be traced throughout the
terrestrial food web using isotope signatures (Gonzalez-Bergonzoni
et al., 2017; Hentati-Sundberg et al., 2020; Kristiansen et al., 2019).
Some Arctic plants, such as polar scurvygrass (Cochlearia groen-
landica), respond positively to marine-derived nutrients with in-
creased population densities and leaf size near nesting seabirds
(Wojciechowska et al., 2015; Zmudczynska-Skarbek et al., 2015). In
contrast, other plant species decrease with marine-derived nutri-
ents, as they are outcompeted by plants better suited to exploit high
nutrient availability (Duda et al., 2020).

Temperature and nutrient status are major determinants of the
functional composition of plant communities. Globally, the realized
above-ground functional trait expressions of plants can be sum-
marized across two major axes of variation; plant size and the ‘leaf
economic spectrum’ characterizing the shift from ‘slow’ resource-
conservative leaf economics (i.e. low specific leaf area (SLA), high
leaf dry matter content (LDMC) and low nitrogen content) to ‘fast’
resource-acquisitive trait strategies (i.e. high SLA, low LDMC and
high nitrogen content; Bruelheide et al., 2018; Diaz et al., 2016;
Joswig et al., 2022; Maire et al., 2015; Ordofiez et al., 2009; Simpson
et al, 2016; Thomas et al., 2020; Wright et al., 2004). In Arctic
tundra, temperature is a main driver of plant height, with warmer
climates favouring taller species or individuals. In contrast, leaf eco-
nomic traits do not respond consistently to temperature (Bjorkman
et al., 2018; Thomas et al., 2020) but vary with nutrient availability
(Helsen et al., 2014; Joswig et al., 2022; Suding et al., 2005; Xia &
Wan, 2008). These findings suggest that marine-derived nutrients
may be important drivers of functional trait variation in Arctic plant
communities, in particular leaf economics, above and beyond the im-
pacts of temperature.

Isotope signatures are proxies for leaf, plant and ecosystem nu-
trient and hydrological cycling. The ratio of **N to N (8*°N%o) in-
dicates processes related to the nitrogen cycle, including nitrogen
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fixation and acquisition (Craine et al., 2015), and is used to determine
the trophic position of organisms (Post, 2002). Organisms occupy-
ing higher trophic levels in marine ecosystems (e.g. seabirds) have
enriched 5'°N%o signatures compared with those occupying lower
trophic levels (Kelly, 2000). Enriched §'°N%o signatures from seabird
excreta can be used to trace marine-derived N throughout terres-
trial food webs (Anderson & Polis, 1999; Caut et al., 2012; Erskine
et al., 1998; Mizutani & Wada, 1988; Wainright et al., 1998). §'3C%o
signatures are indicators for plant water status, with enriched values
indicating higher water-use efficiency (Farquhar et al., 1982; Pérez-
Harguindeguy et al., 2013).

The functional response of plant communities to environmental
change is driven by species turnover (i.e. including changes in species
identity and relative abundance) and/or trait variation within species
(Violle et al., 2012). Generally, about one quarter of total plant trait
variation is attributed to intraspecific variation, but this can exceed
50% for some leaf economic traits, such as leaf nitrogen content
(Jonsddttir et al., 2022; Siefert et al., 2015; Thomas et al., 2020).
For species-poor, High Arctic plant communities, intraspecific trait
variation is relatively more important, and this may explain the high
ecological resilience of these systems whereby taxonomic commu-
nity composition persists and maintains functioning even under
rapidly increasing temperatures (Jonsdottir et al., 2022). Although
marine-derived nutrients from seabirds alter individual Arctic plant
species traits (Wojciechowska et al., 2015; Zmudczynska-Skarbek

()

et al., 2015) and increase the productivity of terrestrial vegetation
(Gonzalez-Bergonzoni et al., 2017), there is a need for studies that
address functional responses of Arctic plants to marine-derived nu-
trient inputs at the community level.

We study how marine-derived nutrients from seabirds and mi-
croclimatic variation across elevation affect the functional composi-
tion of Arctic plant communities in terms of plant size, leaf economics
and leaf isotope signatures. Traits were selected to capture plant
responses to (micro)climate, soil abiotic factors and nutrient avail-
ability. We compare community-weighted trait means across two
elevational gradients in High Arctic Svalbard (Figure 1); one influ-
enced by nutrient input from seabirds, the other without (hereafter:
nutrient and reference gradient). Because the seabirds nest atop a
steep slope, nutrient input increases with elevation. Elevation does
not always capture all microclimatic variation that impacts plant
traits (Bruelheide et al., 2018; Kemppinen & Niittynen, 2022; Opedal
et al,, 2015; Thomson et al., 2021). We therefore measure soil tem-
perature, moisture, nitrogen and carbon, and 51°N%o as a proxy for
seabird influence (Caut et al., 2012). Finally, we quantify the relative
contribution of intraspecific trait variation to total trait variation be-

tween the gradients for each trait. We predict that:

1. Marine-derived nutrients from seabirds shift vascular plant
community traits towards faster leaf economics. We thus ex-

pect more resource-acquisitive trait values (e.g. higher SLA

FIGURE 1 Location of the elevational
gradients included in this study, one near
nesting seabirds (nutrient; bird symbol)
the other without seabirds (reference;

R) (a). Images of the nutrient (left) and
reference gradient (right) (b). Images
were taken at the same time of year.
Elevation profiles of the two gradients (c).
Elevation markers indicate where sites
for plant community trait analyses were
established.

Reference

R
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and nitrogen content and lower LDMC) at higher elevation in
the nutrient gradient, but an opposite trend in the reference
gradient where trait variation is driven mainly by climate.

2. Size traits increase with temperature, whereby microclimate will
be relatively more important than elevation.

3. Intraspecific variation contributes most to total trait variation at

the nutrient gradient and for leaf economic traits.

2 | METHODS
2.1 | Study localities and design

This study was conducted across two elevational gradients near
Longyearbyen in High Arctic Svalbard (Vandvik et al., 2023). One
gradient (nutrient gradient) was located at a coastal, north-west
facing slope near Bjgrndalen (78.24°N, 15.35°E). Here, a seabird
colony of approx. 3500m? consists of little auk (Alle alle, 3000-
4000 pairs) and some pairs (10-20) of black guillemots (Ceppus
grille), fulmars (Fulmarus glacialis) and glaucous gulls (Larus hyper-
boreus). While little auks mainly feed on zooplankton (Calanus
species), the other seabird species eat amphipods and fish spe-
cies (Lanne & Gabrielsen, 1992; Mehlum & Gabrielsen, 1993). The
seabirds nest amidst rocky outcrops and talus slopes underneath
a steep cliff, where their excreta accumulate. Nutrient subsidies
are therefore expected to decrease downslope (Duda et al., 2020;
Finne et al., 2022; Hargan et al., 2017). The other gradient (refer-
ence gradient) lacks the influence of seabirds and was located about
two kilometres inland near Lake Isdammen, along a north-east fac-
ing slope of Lindholmhggda (78.20°N, 15.72°E, Figure 1a,b). The
reference gradient was placed inland because other coastal slopes
were occupied by seabirds or inaccessible. Vascular plant communi-
ties at the two gradients are rich in graminoids, forbs and decidu-
ous dwarf shrubs (Vandvik et al., 2023). Barnacle geese (Branta
leucopsis) and pink-footed geese (Anser brachyrhynchus) graze the
lowlands below the reference gradient, but because of their terres-
trial foraging, they are unlikely to subsidize marine nutrients. There
were no signs of goose grubbing in our plots. Both gradients have
similar bedrock (Dallmann, 2015) and are grazed by Svalbard rein-
deer (Rangifer tarandus platyrhynchus).

At the nutrient gradient, five sites were selected at elevations
ranging from 12 to 170m above sea level (m a.s.l., Figure 1c). At the
reference gradient, seven sites were established at elevations rang-
ing from 10 to 238 ma.s.l. At each site, seven 75x75cm vegetation
plots were established except for at the highest site at the reference
gradient. Here, four plots were established due to limited vegeta-
tion cover. Plot selection was performed to include plots with simi-
lar microtopography (Thomson et al., 2021), minimizing differences
related to factors other than elevation and seabirds, for example no
plots were placed in snowbeds, streams, scree, exposed ridges or
areas covered exclusively by non-vascular vegetation. Plot dimen-
sions were selected as appropriate in relation to plant size and vege-
tation structure, capturing both common and rare species (Halbritter
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et al., 2020). Plots were placed 5m apart. See Table S1 in Supporting

Information for the replication statement.

2.2 | Soil parameters

Volumetric soil water content (-7.5cm depth) was recorded on 19
July 2018 using a hand-held time-domain reflectometry sensor
(FieldScout TDR 300; Spectrum Technologies, Plainfield, IL, USA).
Three measurements per plot were averaged in further analy-
ses. Soil temperature (-7.5cm depth) was recorded every 4h from
19 July until 10 August 2018 with miniature temperature sensors
(ThermoChron iButtons, San Jose, CA, USA) at 36 plots along the
reference gradient and 31 along the nutrient gradient. At each site,
temperature loggers were installed in at least four plots. To measure
soil nutrients and isotopes, 5cm deep soil cores (5.7 cm diameter)
were taken at the end of July to early August 2022. Three soil sam-
ples were taken at each site, but only two were taken at the middle
site at the nutrient gradient (n=35). Soil samples were dried at 60°C.
Stones and roots were sieved out (2mm) and samples homogenized.
Carbon and nitrogen content were analysed using dry combustion
at the CLIPT-lab at the University of Oslo (Matejovic, 1997). Soil
513C and 8°N isotope ratios (%.) were analysed using a Flash 1110
Element Analyzer with a no-blank autosampler connected to a Delta
V plus isotope Ratio Sass spectrometer (Thermo Fischer Scientific)
at the FARLAB at the University of Bergen.

2.3 | Estimating community species composition

The species composition of vascular plant communities was
surveyed for each plot in July 2018 as described by Vandvik
et al. (2023). In short, we visually estimated the cover of each plant
species with >1% cover to the nearest 1% for each plot. Species
identification followed the SvalbardFlora (Elven et al., 2020). Taxon
names were standardized using the TNRS R package v0.3.6 (Maitner
& Boyle, 2021) based on the Taxonomic Name Resolution Service
(Boyle et al., 2013), Tropicos (Missouri Botanical Garden, 2012), The
Plant List (TPL., 2013) and USDA (USDA NRCS, 2015) databases.

2.4 | Trait measurements for vascular plants

Plant material was collected and analysed as described by Vandvik
et al. (2023). In brief, plant functional traits were measured for three
whole individuals or ramets of each plant species covering more than
1% in each plot. Plant samples were collected adjacent to the plots
to avoid destructive sampling. For clonal plants, physically separated
individuals were sampled. After collection, plants were stored in
ziplock bags with moist paper towels in the dark at +6°C and were
processed within 4days. From each plant, we sampled at least three
intact and fully developed leaves. Sampled leaves included petioles
and stipules but excluded sheaths for graminoids. For Equisetum
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species, where the stem is the main photosynthetic organ, the top
8cm section of stem, including any side branches, was used for trait
analyses.

We selected 13 functional traits related to plant size, leaf eco-
nomic spectrum and nutrient cycling across trophic levels (Diaz
et al., 2016). The size traits were as follows: plant height, dry leaf
mass, leaf area and leaf thickness. The leaf economic traits were:
LDMC, SLA, leaf C, N and P content, and C:N and N:P ratios. The nu-
trient cycling traits were: leaf 5'°N%o and 8*3C%o. Chemical analyses
were performed at the University of Arizona (Vandvik et al., 2023).
In total, 9262 trait measurements were performed (reference: 5737,
nutrient: 3525) on a total of 1074 leaf samples (708, 366). Because
it was not possible to conduct nutrient and isotope analyses for all
samples due to insufficient biomass, 454 (240, 214) leaf samples

were analysed, for a total of 2980 chemical measurements.

2.5 | Dataanalyses and statistics

All analyses were performed in R v4.2.2 (R Core Team, 2022). To
test whether soil microclimate, nutrients or isotopes differed be-
tween the nutrient and reference gradient or changed with eleva-
tion, we ran separate mixed-effects models for each soil parameter.
Models included nutrient input (N) as a factor differentiating the two
gradients and elevation (E) as a continuous variable to account for
changes with elevation and distance to the seabird colony, and their
interaction (NxE). Elevation was included as a quadratic term, as this
improved the model fit (lower AIC). Site was included as a random
effect to account for the study design. We performed a likelihood-
ratio test for each model, testing the effect of marine-derived nu-
trients, elevation and their interaction. For each soil parameter, we
compared models by sequential removal of fixed effects terms using
the anova function.

To calculate community-weighted means for each plant trait, we
used a bootstrapping approach using the traitstrap package (v0.1.0;
Maitner et al., 2023; Telford et al., 2021), with hierarchical trait im-
putation to fill missing datapoints (Figure S1). To produce a trait dis-
tribution (Enquist et al., 2015; Wieczynski et al., 2019) per trait and
plot, the data were resampled 100 times, and the resulting distri-
bution means were averaged to determine the overall community-
weighted trait mean per plot. Trait values for size traits, such as plant
height, shoot length, leaf area, dry mass and leaf thickness were log-
transformed before analyses (Kerkhoff & Enquist, 2009).

To test the effect of elevation and seabird influence on
community-weighted plant traits, we ran mixed-effects models for
each community-weighted plant trait using the same modelling ap-
proach described for the soil parameters above. As the model with
the quadratic elevation term produced a singular fit for SLA, we
used a linear elevation term in the model. To test the effect of soil
moisture and temperature on community-weighted traits, we ran
the same model with soil temperature and soil moisture as explan-
atory variables (soil nutrients were not included as these were not
available at the plot level). Quadratic terms produced the best model

fit for both explanatory variables. As soil temperature or soil mois-
ture explained significant variation in only 3 and 5 out of 13 traits,
respectively, we used elevation as a predictor in further analyses
(Figure S2). To test how seabird influence trait responses to marine-
derived nutrients, we ran the model with soil 8°N%o as a predictor.

To quantify the effect of marine-derived nutrients and elevation
on the multivariate taxonomic and functional composition of vascu-
lar plant communities, we performed principal component analysis
(PCA) using the rda function in the vegan package (v2.6.4) (Oksanen
et al., 2020). For plant functional composition, we used scaled and
centred community-weighted trait means but excluded C:N and N:P
due to collinearity. To visualize taxonomic and functional composi-
tion across elevations, we plotted centroids for each elevation and
connected the centroids. We plotted 95% confidence intervals based
on a t-distribution as ellipses for each gradient using the stat_elipse
function in ggplot2 (Wickham, 2016). To test the effect of nutrient
input and elevation and their interaction in the PCA, we used per-
mutation tests with pseudo-F ratios and the adonis2 function from
the R package vegan with 999 permutations and Euclidean distances.
Finally, we plotted soil temperature, moisture and isotopes, and the
loadings of each species or trait as a vector.

To calculate the relative contribution of intraspecific trait varia-
tion versus species turnover to total plant trait variation in response
to marine-derived nutrients, we calculated a fixed (species turnover
effects) and specific (intraspecific and turnover effects) value for
each trait and plot across both gradients (Leps et al., 2011). To cal-
culate the fixed mean, we first calculated the average trait value for
each species from all observations (i.e. one value per species, based
on the trait data from both gradients). We then used these species'
means to calculate community-weighted trait values for each plot.
The specific mean was calculated using trait values for species within
each plot using bootstrapping described above. The difference be-
tween the fixed and specific mean trait value thus quantifies the
contribution of intraspecific variation. To quantify the contribution
of intraspecific variation and species turnover to the variation in
community-weighted trait values at the nutrient and reference gra-
dient separately, we decomposed the Sum of Squares from ANOVAs
(Leps et al., 2011). Three separate ANOVAs per gradient were per-
formed: fixed, specific and the difference between fixed and specific
trait variation. Then, we calculated the proportions of variability for
intraspecific variation and species turnover by dividing their Sum of
Squares by the total Sum of Squares for total variation. The aver-
age contribution of intraspecific variation and species turnover was
calculated for each plant size trait, leaf economic trait and isotope

signatures.

2.6 | Permissions

The research project is registered within the Research in Svalbard
portal (RiS-10935) (Svalbard Science Forum, 2025). Sampling of
leaves and soil was allowed by the Governor of Svalbard under the
Svalbard Environmental Protection Act, section 29.
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FIGURE 2 Average relative cover of different vegetation components (a) and average relative cover of vascular plant growth forms (b)
across the reference and nutrient gradient. Site refers to the different elevations, where 1 is the lowest elevation and 7 is the highest.

3 | RESULTS

3.1 | Vegetation communities and plant
growth forms

Both gradients supported continuous and relatively dense veg-
etation, dominated by bryophytes and vascular plants (Figure 2).
Lichens were most common at the highest elevation at the refer-
ence gradient. Biocrust was more common at the reference gradient,
except for the lowest elevation at the nutrient gradient (Figure 2).
Average cover of bryophytes was 1.5 times higher at the nutrient
compared with the reference gradient (70.5+4.6% vs. 47.8+2.3%,
respectively). Vascular plant cover was similar between the gradi-
ents (41.7+2.4% and 32.4+2.2%, respectively). Forbs, graminoids
and deciduous shrubs generally dominated, while evergreen shrubs
were only abundant at low-to-intermediate elevations at the refer-
ence gradient. At the highest elevation at the nutrient gradient, vas-
cular plant communities were dominated by forbs and graminoids
(Figure 2). In total, 31 plant species were registered, 18 of which
were found at the nutrient gradient and 28 at the reference gradient

(Table S2). Plant species richness per plot was lower at the nutrient
gradient than at the reference gradient (6.5+0.1 vs. 9.6 +0.1).

3.2 | Soil microclimate and nutrients

Mean soil temperature differed by almost 2°C between the nutri-
ent and reference gradient (mean+standard error: 6.5+0.2°C
vs. 8.4+0.2°C, respectively), with the lowest values at mid eleva-
tions and the highest at low and high elevations at both gradients
(Table S3, Figure S3). Soil moisture was 21.8+2.2% at the nutrient
and 24.7 + 1.1% at the reference gradient, decreasing with elevation
across both gradients, but more strongly along the nutrient gradient
(Table S3, Figure S3). Total soil carbon (11.6 +2.2% vs. 6.2 +0.8%)
and nitrogen content (0.5+0.07% vs. 0.2+0.02%) were higher at
the nutrient than at the reference gradient. Soil nitrogen content
increased with elevation across the nutrient gradient and decreased
with elevation at the reference gradient (Table S3, Figure S3). Soil
518C was enriched at the reference gradient (-26.5+0.2%0) com-
pared with the nutrient gradient (-27.8 +0.1%o), while soil §*°N was
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enriched at the nutrient gradient (6.1+0.8%o vs. 1.3 +0.2%o) and in-
creased across the nutrient gradient (Table S3, Figure S3).

3.3 | Vascular plant community-weighted
mean traits

Community-level size traits (plant height, dry leaf mass, leaf area and
leaf thickness) showed contrasting responses to elevation between
the gradients. At the nutrient gradient, trait values increased with
elevation (but with a convex relationship). At the reference gradient,
trait values showed humpbacked relationships, with the highest trait
values at middle elevations (Table S4, Figure 3). Leaf economic traits
showed more diverse responses (Table S4, Figure 3). Specifically,
SLA and P% increased, and LDMC decreased with elevation across
the nutrient gradient, while the responses were weaker or absent
across the reference gradient. Leaf C% peaked at mid-elevation at
the nutrient gradient but decreased with elevation at the reference
gradient. Leaf N% and C:N ratio showed a minor and similar response

across elevation at both gradients, but leaf N% was generally higher
and C:N ratio lower at the nutrient gradient. Leaf N:P ratio showed
no significant responses to elevation or seabird presence (models
with nutrients or elevation as explanatory variables did not explain
more than the null model). Leaf §'°N%o was enriched at the nutrient
gradient and increased sharply with elevation but did not change
across the reference gradient. Leaf §'°C%o. showed no significant
response to elevation. For an overview of average community-
weighted mean traits, see Table S5.

For all traits except plant height, leaf P% and leaf N:P, using soil
5°N%o as a predictor produced models with higher conditional
R?-values than models using elevation (Tables S4 and Sé). Eight
community-weighted mean leaf traits showed a significant response
towards values associated with larger leaf size and more resource-
acquisitive strategies with increasing soil 5>°N%o (Figure 4, Table S6).
Leaf area and leaf thickness increased, and SLA and LDMC shifted
towards more resource-acquisitive values with enriched soil 51N %o.
Leaf P% correlated positively with soil §'°N%o, while N:P showed
contrasting responses at the two gradients and had relatively low
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values at sites with the most enriched soil 3°N%. values. Leaf C%
showed a concave response with resource-conservative values at
intermediate soil 8°N%o values. N% was higher and C:N lower at the
nutrient gradient, but these traits showed no significant response to
soil 5°N%o. Similarly, 513C%o signatures were higher at the nutrient
gradient but showed no clear responses to soil §'°N%.. Leaf §:°N%o
was higher at the nutrient gradient and increased with enriched soil
5°N%o. Plant height and leaf dry mass showed no significant re-
sponse to soil 5 N%o (Figure 4, Table S6).

3.4 | Vascular plant taxonomic and functional
community composition

The taxonomic composition of vascular plant communities dif-
fered between gradients and across elevation (i.e. proximity to
the bird nests, Table S7). The first PC axis (explaining 35.6% of
variation) distinguished the site closest to the seabirds, character-
ized by a high abundance of Cerastium arcticum and Oxyria digyna

and low abundance of Salix polaris, from lower-elevation sites at
the nutrient gradient and all sites at the reference gradient. The
second PC axis (13.2%) separated out lower-elevation plots char-
acterized by Bistorta vivipara and Dryas octopetala at both gradi-
ents (Figure S4).

For functional composition, the first two PC axes explained 46%
and 14.3% variation, which we considered sufficient to justify fo-
cusing primarily on those two axes when interpreting the PCA re-
sults (but see Figure S5). Differences in trait composition between
sites and gradients were driven by the highest site at the nutrient
gradient, related to higher values for size and leaf economic traits
(Figure 5a,b, Tables S8 and S9). Size traits (towards the upper right
of the diagram) and leaf economic traits (towards the lower right)
form near-perpendicular trait axes in ordination space (Figure 5b).
Vectors for soil C% and N%, but most strongly soil §*°N%o, aligned
with leaf N% and SLA towards one side of the diagram, suggesting
that increases in these soil parameters are associated with resource-
acquisitive trait values and nutrient inputs from seabirds. Vectors
for soil temperature, moisture, and 5:3C%o were poorly associated
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with trait axes (Figure 5b). The permutational multivariate analysis
of variance showed that elevation explained 33.2%, nutrient input
13.1%, and their interaction 0.6% of variation. 47.8% of variation was

unexplained.

3.5 | Contributions of intraspecific variation and
species turnover to plant functional trait variation

The relative contribution of intraspecific variation to total trait vari-
ation differed between gradients and among traits (Table S10). At
both gradients, species turnover was the main source of variation

for size traits, accounting for 52.5%-70.3% of observed variation in
plant height, leaf dry mass, area and thickness. The contribution of
species turnover to size-related traits was consistently higher at the
nutrient gradient (Figure 6a,b). Leaf economics and isotopes were
mostly driven by intraspecific variation at the nutrient gradient
(59.3% and 55.8%), but were driven primarily by species turnover at
the reference gradient (54.6% and 67.1%, respectively; Figure 6a).
Intraspecific variation varied among the measured leaf economic
traits at the nutrient gradient, with a notably strong contribution
to variation in N:P ratio, P%, SLA and N%, whereas C%, C:N ratio
and LDMC were driven largely by species turnover (Figure 6b). For
55 N%o, the contribution of intraspecific variation was substantially
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larger at the nutrient than at the reference gradient, while 513C%o

was similar for both gradients (Figure 6b).

4 | DISCUSSION

This study shows that marine-derived nutrients from seabirds mod-
ulate the functional composition of vascular plant communities in
the High Arctic. Plant community composition varied between and
across the nutrient and reference gradient. However, taxonomic
turnover was not complete, and species found near the seabirds
(e.g. Oxyria digyna, which responds positively to seabird influence;
Eurola & Hakala, 1977) are also found elsewhere in Svalbard (Elven
et al., 2020). Stronger turnover and more unique community com-
position can be expected at seabird colonies with higher popula-
tion densities or in wetter conditions than studied here (Eurola &
Hakala, 1977). Piscivorous rather than zooplanktivorous seabirds
may further increase availability of soil nutrients, such as phospho-
rus (Zwolicki et al., 2013), and impact plant community composition
more strongly.

Marine-derived nutrient subsidies, represented by enriched
soil 8°N%o signatures, associated with more resource-acquisitive
trait values (e.g. larger and thicker leaves, higher SLA and lower
LDMC) and plant communities closest to seabirds featured dis-
tinct functional compositions. In addition, soil 5" N%o signature
was a better predictor of community-weighted mean traits across
the gradients than elevation or soil microclimate. Trait variation

across both gradients was oriented along two perpendicular axes,
one related to plant size and the other to leaf economics. Both axes
correlated poorly with soil microclimate, but leaf economics traits
(most notably leaf N% and SLA) were positively associated with soil
55N%o signatures, suggesting they relate to seabird influence. More
resource-acquisitive trait values near seabirds correspond to earlier
studies reporting that increased nutrient availability supports more
acquisitive trait values at the species (Poorter & De Jong, 1999) and
community level (Jager et al., 2015; Mason et al., 2012). Enriched
leaf 8*°N%o signatures were also found for Oxyria digyna growing
under a seabird cliff in a nearby location in Svalbard (Zmudczynska-
Skarbek et al., 2015) and in vegetation on islands in the Bering sea
(Wainright et al., 1998). Leaf 8'3C%. isotopes were typical for C3
plants (Choy et al., 2010; Hawke & Newman, 2007) and did not re-
spond to marine-derived nutrients, indicating that water-use effi-
ciency was not affected.

Soil microclimate and nutrients varied significantly between and
across the gradients but poorly explained patterns in trait variation.
Elevation was a better explanatory factor for plant community traits
than soil temperature or moisture, which implies that a diverse com-
plex gradient of biotic and abiotic conditions, including the influence
of seabirds, drives the observed variation in plant traits across eleva-
tion. We discuss some of these dynamics below.

Bryophytes are important components of Arctic vegetation
(Lindo & Gonzalez, 2010; Mateo et al., 2016; Turetsky et al., 2012).
Depth and density of the bryophyte layer affect vascular plants
through soil microclimate (Gornall et al., 2011). At the nutrient
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gradient, bryophyte cover was higher than at the reference gradient.
We hypothesize that such extensive bryophyte cover could have
contributed to the lower soil temperatures observed at the nutrient
gradient, keeping soils cooler and potentially reducing active layer
depth (Porada et al., 2016; Schuuring et al., 2024). Future studies
on the effects of seabird declines should also include functional and
taxonomic assessments of primary producers other than vascular
plants as they constitute an important component of Arctic vegeta-
tion and impact soil microclimate and ecosystem processes (Gornall
et al., 2011; Jaroszynska et al., 2023; Roos et al., 2021; Salazar
et al., 2024; Van Zuijlen et al., 2020).

In absence of seabirds, the reference gradient can be regarded
as a classic elevational gradient, where theory predicts a decrease
in temperature with elevation and a subsequent shift towards re-
source conservative strategies (Sundqvist et al., 2013). However,
we found that soil temperature peaked at intermediate elevations,
that soil temperature and moisture were poor predictors of plant
traits, and that some traits (e.g. SLA) had more resource-acquisitive
values at high elevation. Such counter-intuitive responses to ele-
vation and temperature are also found in studies from alpine sys-
tems (Lynn et al., 2023; Roos et al., 2019) and suggest that leaf
economic traits do not respond linearly to elevation or growing
season temperatures, in contrast to traits related to plant size
(Bjorkman et al., 2018; Lynn et al., 2023; Rissanen et al., 2023).
We hypothesize that microtopography determines the microcli-
mate Arctic plants experience (Kemppinen et al., 2021; Opedal
et al., 2015), and that air and soil temperatures therefore may not
reflect actual leaf temperatures, which ultimately drive photosyn-
thetic rates (Michaletz et al., 2015).

Steep slopes and dark rocks may create favourable growing
conditions during periods of low sun angle in High Arctic spring and
summer (Eidesen et al., 2018). In addition, rocks can shelter plants
from the wind in otherwise open landscapes, allowing higher leaf
temperatures and photosynthetic activity than expected from ambi-
ent air temperature. Near rocks, snow may accumulate and increase
snow depth, which is known to be a major driver of Arctic and alpine
plant community composition (Kemppinen et al., 2021; Niittynen
et al., 2020). Sheltered microclimatic conditions can also promote
a more favourable onset of snowmelt and thereby a longer grow-
ing season, which may support plants with resource-acquisitive trait
strategies.

Intraspecific variation in the sampled plant communities was
relatively high compared with global values (Siefert et al., 2015), yet
comparable to other studies in Svalbard (Jonsddttir et al., 2022).
Similar to earlier studies, the contribution of intraspecific varia-
tion differed among traits, and was largest for traits associated
with nutrient status, such as leaf N% and N:P (Henn et al., 2018;
Roos et al., 2019; Thomas et al., 2020). In addition, intraspecific
variation was more important at the nutrient gradient compared
with the reference gradient for leaf economic traits and 5°N%.o,
whereas intraspecific variation was most important for size traits
at the reference gradient. One explanation is that seabird drop-
pings contribute to more heterogeneous availability of nutrients

(both spatial and temporal), which is reflected by higher intraspe-
cific variation in traits related to nutrient acquisition and usage.
This suggests that plant communities respond through plasticity
of the existing species rather than through species turnover. These
findings contribute to a growing understanding that intraspecific
trait variation is an important mechanism for alpine and Arctic
plant community responses to ongoing environmental changes
(Bjorkman et al., 2018; Jénsdottir et al., 2022), contributing to
their resilience. This is particularly relevant for the geographi-
cally isolated and species-poor Svalbard flora (Elven et al., 2020).
Significant changes in taxonomic and functional composition may
be expected when new species are introduced to Svalbard and
manage to colonize the archipelago under ameliorated climatic
conditions (Artsdatabanken, 2023).

Seabird populations are in global decline (Paleczny et al., 2015)
and subsequent reductions in nutrient subsidies cannot be seen
separately from other drivers of environmental change currently
impacting Arctic ecosystems (Box et al., 2019). Permafrost thaw
affects nutrient availability in Arctic soils, leading to increased leaf
nutrient content and plant biomass (Jasinski et al., 2022; Keuper
et al., 2012; Salmon et al., 2016). In contrast to fertilization by sea-
birds, permafrost thaw concurs with wetter soil conditions, promot-
ing significant shifts in plant community compositions (Errington
et al., 2024). Experimental studies demonstrate that warming
amplifies the effect of increased nutrient availability on Arctic
and alpine plant communities (DeMarco et al., 2014; Klanderud &
Totland, 2005; Scharn et al., 2022). In the experiments, released
nutrient limitation supports taller and faster-growing plant spe-
cies at the expense of species with more resource-conservative
trait strategies. Climate warming may thus counteract the effects
of reduced marine-derived nutrient inputs from seabirds, but we
note that these processes occur on different spatial and temporal
scales. More studies are needed to understand the spatiotemporal
variation in the impacts of marine-derived nutrients from seabirds
on plant communities, in the Arctic and across broader geographic
contexts, and how these interact with other aspects of global en-

vironmental change.
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