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Tropical forests are approaching critical 
temperature thresholds

Christopher E. Doughty1 ✉, Jenna M. Keany1, Benjamin C. Wiebe1, Camilo Rey-Sanchez2, 
Kelsey R. Carter3,4, Kali B. Middleby5, Alexander W. Cheesman5, Michael L. Goulden6, 
Humberto R. da Rocha7, Scott D. Miller8, Yadvinder Malhi9, Sophie Fauset10, Emanuel Gloor11, 
Martijn Slot12, Imma Oliveras Menor9,13, Kristine Y. Crous14, Gregory R. Goldsmith15 & 
Joshua B. Fisher15

The critical temperature beyond which photosynthetic machinery in tropical trees 
begins to fail averages approximately 46.7 °C (Tcrit)

1. However, it remains unclear 
whether leaf temperatures experienced by tropical vegetation approach this 
threshold or soon will under climate change. Here we found that pantropical canopy 
temperatures independently triangulated from individual leaf thermocouples, 
pyrgeometers and remote sensing (ECOSTRESS) have midday peak temperatures of 
approximately 34 °C during dry periods, with a long high-temperature tail that can 
exceed 40 °C. Leaf thermocouple data from multiple sites across the tropics suggest 
that even within pixels of moderate temperatures, upper canopy leaves exceed Tcrit 
0.01% of the time. Furthermore, upper canopy leaf warming experiments (+2, 3 and 
4 °C in Brazil, Puerto Rico and Australia, respectively) increased leaf temperatures 
non-linearly, with peak leaf temperatures exceeding Tcrit 1.3% of the time (11% for more 
than 43.5 °C, and 0.3% for more than 49.9 °C). Using an empirical model incorporating 
these dynamics (validated with warming experiment data), we found that tropical 
forests can withstand up to a 3.9 ± 0.5 °C increase in air temperatures before a 
potential tipping point in metabolic function, but remaining uncertainty in the 
plasticity and range of Tcrit in tropical trees and the effect of leaf death on tree death 
could drastically change this prediction. The 4.0 °C estimate is within the ‘worst-case 
scenario’ (representative concentration pathway (RCP) 8.5) of climate change 
predictions2 for tropical forests and therefore it is still within our power to decide (for 
example, by not taking the RCP 6.0 or 8.5 route) the fate of these critical realms of 
carbon, water and biodiversity3,4.

Tropical forest mean temperatures are high, and their diel and seasonal 
variations are relative small, thus even a small change in temperature 
could more greatly impact tropical plant species than a large tem-
perature change in other global regions5. Average temperatures have 
risen by 0.5 °C per decade in some tropical regions, and temperature 
extremes are becoming more pronounced (for example, the El Niño 
of 2015 was 1.5 °C warmer than the El Niño of 1997)6,7. As temperatures 
in tropical forests are near or above the temperature optimum for 
photosynthesis8, further increased temperatures may close stomata, 
reducing transpirational cooling and exposing leaves to damaging 
temperatures. More than 150 years ago, Sachs (1864) first reported 
that leaves from different plant species could withstand temperatures 

of up to 50 °C, but would die at temperatures even slightly higher9. In 
the era of climate change, this finding is still relevant. How close for-
ests are to a high temperature threshold such as the one proposed by 
Sachs is a particularly important issue in tropical forests, which serve 
as critical stores and sinks of carbon, are host to most of the world’s 
biodiversity and may be more sensitive to increasing temperatures 
than other ecoregions3,4.

More recently, techniques to determine the ability for leaves to with-
stand high temperatures have advanced to focus on Tcrit, or the tem-
perature at which irreversible damage to the photosynthetic machinery 
occurs. Over the past few years, Tcrit data have become increasingly 
available for tropical forests, specifically measured as the temperature 
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at which the ratio of variable fluorescence yield to maximum fluores-
cence yield (Fv/Fm), reflecting photosystem II functioning, starts to 
decline1,10. The decline in Fv/Fm is often followed by the development 
of necrosis and leaf death11. Heat tolerance, measured by Tcrit, varies 
minimally among tropical species, mainly due to differences in grow-
ing environment and leaf traits. For instance, among 147 tropical tree 
species, the average Tcrit was found to be 46.7 °C (5–95th percentile: 
43.5–49.7 °C)1. They also found that older tree lineages that experienced 
higher temperatures in the distant past did not have higher Tcrit, and 
thus were not better acclimated to the higher temperatures of today. 
Across the planet, heat tolerance generally increases with higher mean 
growing temperatures. For example, as average temperatures increase 
by approximately 20 °C from the Arctic to the Tropics, heat tolerance 
was 9 °C greater in tropical plants than in Arctic plants12. Similarly, as 
temperatures decrease by 17 °C along a tropical elevation gradient, 
heat tolerance decreases by approximately 2 °C10. Heat tolerance also 
increases with increasing leaf mass area, suggesting that heat tolerance 
may be linked to construction costs of the leaves and their mean leaf 
lifetime1.

With a much-improved understanding of Tcrit across the Tropics, it is 
now important to know how close tropical leaves are to experiencing 
and surpassing these critical temperatures. In the past, tropical forest 
leaf and canopy temperatures were difficult and time consuming to 
measure, but new technologies such as drones and thermal cameras 
are making the process much easier13. More recently, the Ecosystem 
Spaceborne Thermal Radiometer Experiment on Space Station (ECOS-
TRESS) sensor on the International Space Station can provide unique 
high temporal and spatial resolution measurements of land surface 
temperatures (LSTs) at the global scale14. ECOSTRESS is an improve-
ment over previous thermal satellite LST sensors because it has five 
spectral bands, a 70-m spatial resolution and multiple diel overpass 
times, as well as improved algorithms.

Here we used data from the new ECOSTRESS sensor to estimate peak 
pantropical forest canopy temperatures. We began by ground truthing 
the satellite data with tower-based pyrgeometer data. We then used 
these data to determine what causes variation in peak temperatures 
at the canopy scale and show similar trends driving peak temperatures 
across all of the Tropics. Critically, we show that for a given canopy 
temperature, individual leaf temperatures display a ‘long tail’ of values 
in the distribution, in which the temperatures of a few individual leaves 
far exceed that of the overall canopy, and that this skewed distribution 
persists under leaf warming experiments of 2, 3 and 4 °C. Finally, we 
developed a simple empirical model to explore the implications of 
observed leaf temperatures on the fate of tropical forests under future 
climate change.

Ground validation
Using pyrgeometer data, we first ground truth ECOSTRESS and found 
similar peak temperatures between a 3-year, 30-min averaged canopy 
temperature pyrgeometer dataset for a lowland tropical rainforest 
site near the Tapajos River (KM 83 eddy covariance tower) in Brazil 
and a broad region (Extended Data Fig. 1a, red box) of the Amazon 
basin (Fig. 1a; r2 = 0.75, n = 16, P < 0.0001, with ECOSTRESS having a 
slight cool bias (Extended Data Fig. 2d) matching previous findings15). 
The pyrgeometer data at that site indicate that midday sunny canopy 
temperatures in the dry season ( July to December) averaged 33.5 °C 
compared with 31.0 °C in the wet season ( January to June) (Fig. 1a). 
Sampling frequency (Extended Data Fig. 3), latent heat flux (Extended 
Data Fig. 2c), air temperature (Extended Data Fig. 2b) and soil mois-
ture (Extended Data Fig. 2a) all impacted canopy temperatures. The 
tower-mounted pyrgeometer inherently averages spatially (over a 
footprint of 8,000 m2) and thus amalgamates individual peak leaf tem-
peratures. Therefore, we used leaf thermocouples on three canopy tree 
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Fig. 1 | In situ and warming experiment leaf temperatures compared with 
canopy temperatures. a, Diurnal temperature patterns for the dry season for 
a region (Supplementary Fig. 1a) of the Amazon basin using ECOSTRESS data 
(green). Average canopy (solid line) and 40-m air temperatures (circles) from 
the KM 83 eddy covariance tower for the dry season (red) and the wet season 
(blue) for sunny periods (when solarin/solarin,max is more than 90% for the hour). 
b, Histogram of individual canopy top leaf thermocouples from 11 individual 
leaves from the same site as in a over 54 sunny periods lasting 20 min 

(measurements were taken every 2 min) and the average of these data (33.1 °C). 
Tcrit is the temperature when the photosynthetic machinery breaks down and is 
shown as a red line. c, We aggregated all leaf thermocouple data from 
Supplementary Fig. 7 for ambient (blue) and warmed leaves (red) and show the 
percentage of leaves at +2 °C (Brazil), +3 °C (Puerto Rico) and +4 °C (Australia) 
warming that were more than Tcrit. d, Air temperature versus leaf temperature 
for a warming experiment for individual leaves (red dots), average leaf 
temperatures (blue circles) and one-to-one line (blue).
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species at the same site to assess individual leaf temperatures. The mean 
temperatures for 11 individual sun-exposed leaves over 54 sunny 20-min 
periods also averaged approximately 33.1 °C (similar to that measured 
by the pyrgeometer) but with a ‘long tail’ of high temperatures (more 
than 40 °C) in the distribution (Fig. 1b).

We then aggregated similar upper canopy leaf thermocouple data-
sets from Brazil16,17, Puerto Rico18, Panama19 and Australia20 and all had 
long-tail distributions (Fig. 1c and Extended Data Figs. 4 and 5) with 
upper limits of approximately 44 °C (ranging between 43 and 48 °C)  
(but see Extended Data Fig. 5c for an example of a cooler Atlantic forest16).  
When we zoomed in on the long tail of each dataset (insets in 
Extended Data Figs. 4 and 5), the curve shows statistical regularity,  
which allowed us to estimate Tcrit as a percent of all canopy top leaves. 
For instance, when all data are aggregated across sites, we estimated 
that 0.01% (0.03% for more than 43.5 °C) of all leaves will surpass Tcrit 
at least once a season (Fig. 1c). Although infrequent, the occurrence of 
extreme temperatures may have a catastrophic effect on the physiology 
of a leaf and may be thought of as a low-probability, high-impact event.

We then aggregated data from three in situ upper canopy warming 
experiments in which leaves were heated by 2, 3 and 4 °C (in Brazil17, 
Puerto Rico18 and Australia20, respectively). Warmed leaf peak tempera-
tures ranged between 51 and 54 °C (Extended Data Fig. 4), an increase 
of approximately 8 °C above ambient highs (mean of approximately 
45 °C; Extended Data Fig. 4). The percentage of warmed leaves exceed-
ing Tcrit at least once a year increased to 1.3% of all warmed leaves (11% for 
more than 43.5 °C, and 0.3% for more than 49.9 °C) (Fig. 1c) because of a 
non-linear relationship between leaf and air temperatures in the warm-
ing experiments (Fig. 1d). During the Brazilian warming experiment, 
individual leaves exceeded Tcrit and T50 (the temperature at which Fv/Fm 

decreases by 50%) with noticeable signs of leaf necrosis, some for a 
duration of more than 8 min (Extended Data Fig. 6), and following 
this, net transpiration in warmed branches decreased significantly 
(P < 0.0001) by an average of 27% (Fig. 3a). In the warming experiments, 
leaves exceeded Tcrit for extended periods (more than 8 min) 0.2% (0.6% 
for more than 6 min) of the time over the course of a season (Extended 
Data Fig. 6), events that can cause leaf browning and necrosis.

Remote sensing data
We analysed ECOSTRESS LST data along with comparisons to Visible 
Infrared Imaging Radiometer Suite  (VIIRS) and Moderate Resolution 
Imaging Spectroradiometer (MODIS), as well as soil moisture active 
passive (SMAP) soil moisture. At the landscape scale (Extended Data 
Fig. 1, red box), peak ECOSTRESS LST (approximately 36 °C) using all 
data corresponded with periods of low SMAP-measured soil mois-
ture (approximately 0.3 m3 m−3) (Fig. 2a,b). A linear extrapolation of 
our pyrgeometer data to a soil moisture of 0.3 m3 m−3 would predict 
a similar canopy temperature (approximately 36 °C) (Extended Data 
Fig. 2a). For the warmest data point (Fig. 2c,d), we then expanded the 
area (Extended Data Fig. 1, blue box) and applied the highest quality 
data flags (approximately 6% of the data used; see Methods and Sup-
plementary information for an extensive discussion of this), which 
reduced the median value to 34 °C. These average temperatures do not 
reflect the extremes, as 0.5% of the data is more than 38 °C and 0.1% is 
more than 40 °C (Table 1 and Fig. 2d). We show the long tail distribu-
tion of temperatures (with a log10 scale) for Amazonia in Fig. 2d. Using 
less-restrictive or no quality flags generally resulted in higher tails 
more than 40 °C (Supplementary Table 2). We compared ECOSTRESS 
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Fig. 2 | Remotely sensed peak canopy temperature across the tropics. 
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to other LST satellites (VIIRS and MODIS) (Extended Data Figs. 9 and 10 
and Supplementary Tables 1 and 2) and showed similar results, but with 
greater fidelity and ability to capture long tails with ECOSTRESS. LST 
for Central Africa (Fig. 2f and Extended Data Fig. 7) and Southeast Asia 
(Fig. 2e and Extended Data Fig. 8) during similar peak dry periods had 
similar peak temperatures (with data flags; Table 1). We then estimated 
the highest temperatures during dry periods if temperature increased 
by 2 °C (to simulate climate change) and found that the percent of time 
above threshold temperatures would increase by an order of magni-
tude in all three regions. For example, the percent time that Amazon 
canopies spent at temperatures 38.0 °C or more would increase from  
0.5 to 5% and the percent time of 40.0 °C or more would increase  
from 0.1 to 1% (Table 1).

Model results
An empirical model to explore the temperature thresholds of tropi-
cal trees was parameterized using the temperature distributions of 

warmed and non-warmed leaves (Fig. 1c) from the combined tropical 
datasets (n = 5). Assuming leaf death at Tcrit and evaporative cooling 
as a linear function of the number of leaves, we show that enhanced 
warming could tip the forest towards the death of all leaves and pos-
sible tree mortality (Table 2 and Fig. 3b). The modelled effect of warm-
ing on reduced transpirational cooling approximately matched the 
measured values; a 26% (±28%) (n = 30 simulations) reduction of mod-
elled evaporative cooling with approximately 2 °C warming, versus 
a measured 27% average reduction after approximately 2 °C warm-
ing during the Brazilian warming experiment (Fig. 3a). The decline in 
transpiration occurred after leaf temperatures exceeded both Tcrit for 
more than 8 min (Fig. 3a, inset) and T50. Mean initial modelled canopy 
temperature was 33.7 ± 0.4 °C, matching the measured canopy average 
(33.5 °C) during peak temperature periods (sunny and midday). When 
run using the most likely parameters, including a Tcrit of 46.7 °C1, the 
model showed that most forests could withstand up to 3.9 ± 0.5 °C 
warming before the death of all leaves and potential tree death (n = 30 
simulation runs; Table 2 and Fig. 3b), but a series of sensitivity studies 
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give a temperature distribution between 2 and 8 °C (Table 2). Owing to 
the stochastic nature of droughts in our model, total leaf loss ranged 
over a wide timespan. For instance, if temperatures increase by 0.03 °C 
per year, we estimate that the mean time to leaf death would be 132 
years, but extensive canopy leaf mortality could occur as early as 102 
years and as late as 163 years (Table 2 and Fig. 3b).

Discussion
Several lines of remotely sensed, tower-based and in situ evidence 
(ECOSTRESS, VIIRS, pyrgeometer and leaf thermocouples) suggest that 
hot periods in tropical forests with low soil moisture lead to canopy tem-
peratures that average approximately 34 °C, with some pixels exceeding 
40 °C8,21. Even within a given LST pixel, there is a long-tail distribution 
with individual leaf temperatures exceeding 40 °C. Currently, 0.01% of 
upper canopy leaves from in situ measurements exceeded Tcrit at least 
once a season (n = 5 sites); warming experiments (n = 3) suggest 1.4% 
of upper canopy leaves will exceed Tcrit under future warming condi-
tions (Fig. 1c). We posit that capturing the higher tail temperatures 
may be important for future climate change predictions in tropical 
forests, because as individual leaves exceed Tcrit, they die, thus reduc-
ing the net evaporative cooling potential for the canopy (as suggested 
in Figs. 1d and 3a). This is supported by branch warming experiments 
in which noticeable signs of leaf damage and a reduction of transpira-
tion by 27% followed periods in which leaf temperatures exceeded Tcrit 
for extended periods (Fig. 3a). Certain tropical regions, such as the 
Southeast Amazon, may already be experiencing critical thresholds22. 
Many recent large-scale drought studies have shown that the largest, 
most sun-exposed trees die disproportionately23,24. Moreover, there 
has been a recent increase in continental mortality across the Amazon 
basin (although not in the Congo basin; Table 1 shows that the Congo 

basin experiences lower peak temperatures than the Amazon)4 and 
carbon uptake across the basin has been reduced25. We propose that 
high leaf temperatures may have a role (along with carbon starvation 
and hydraulic limitation26) in those recent mortality events.

We make several assumptions in our model related to the broader 
tipping point results. The first key assumption is that within a given LST 
pixel, there is a long tail of high individual tropical leaf temperatures fol-
lowing Fig. 1c. This is supported by several leaf thermocouple datasets 
(n = 5; Fig. 1 and Extended Data Figs. 4 and 5), all of which show a long 
tail, as well as first principles (Supplementary text). Critically, warming 
experiments show non-linear trends (Fig. 1c,d) in which temperature 
increases of 2, 3 and 4 °C increase maximum leaf temperatures by larger 
amounts (+8.1, +6.1 and 8.0 °C, respectively; Extended Data Fig. 4). 
Many other studies have documented individual leaf temperatures 
approaching 46.7 °C8,11,17,19.

The second assumption is that water-stressed pantropical median 
canopy temperatures can average approximately 34 °C with a spatial tail 
exceeding 40 °C (Fig. 2). In other words, remote sensing data suggest 
that entire canopies and forests are getting very warm and (our first 
assumption) that within these pixels there is a long-tail distribution of 
individual leaf temperatures. ECOSTRESS and VIIRS LST data are both 
more than 1 °C warmer (34.7 and 33.9 °C) than older LST sensors such 
as MODIS (32.7 °C) (ECOSTRESS has approximately 0.75 °C cold bias 
compared with VIIRS15). We assume ECOSTRESS and VIIRS will be more 
accurate than MODIS because there are more thermal bands, vegeta-
tion can be identified with emissivity (for ECOSTRESS and VIIRS, but 
not for MODIS) and an improved algorithm27 can accurately estimate 
temperatures within 1 K for many surfaces28. We further found that 
adding 2 °C (to replicate climate change) to the measured ECOSTRESS 
satellite data would increase the occurrence of high-tail temperatures 
by about an order of magnitude (for example, from 0.1 to 1% for more 
than 40 °C) (Table 1). Therefore, the change in percentage of time when 
temperatures exceeded more than 40 °C in response to a simple addi-
tion of 2 °C was not a simple linear change.

The third assumption is that leaves at temperatures more than Tcrit will 
die, and thus stop contributing to future transpiration (although tran-
spiration often stops at temperatures lower than Tcrit), and that the sum 
of evaporative cooling is a linear function of the total number of tran-
spiring leaves. Our Tcrit value is based on Slot et al.1, who found the mean 
(Tcrit) was 46.7 °C (5–95th percentile: 43.5–49.7 °C) and the temperature 
when Fv/Fm had decreased by 50% (T50) was 49.9 °C (47.8–52.5 °C)1. Tcrit 
variation is important because approximately 50% of the species from 
Slot et al.1 had a Tcrit of less than 46.7 °C with negative consequences at 
lower temperatures for those species. Incorporating this variation in 
our model demonstrated that those consequences could exacerbate 
conditions for other species as they die and their evaporative cooling is 
reduced, leading to less future warming (approximately 0.1 °C) needed 
to achieve leaf death when such variation is included (Table 2). Branch 

Table 1 | Current and future temperature extremes across the 
tropics

Region 38.0 °C or more 
(%)

40.0 °C or more 
(%)

45.0 °C or more 
(%)

Current +2 °C Current +2 °C Current +2 °C

South America 0.50 5 0.10 1 0 0.10

Central Africa 0.60 2 0.06 0.60 0 0.01

Southeast Asia 
(Borneo)

3 8 1 3 0.01 0.30

The percentage of time that canopy temperatures are estimated to exceed thresholds of 
38.0, 40.0 and 45.0 °C or more for low soil moisture regions of the Amazon, Central Africa 
and Borneo. We then increased temperature by 2 °C to estimate the effect of climate change 
and show the same estimates for the three regions. Canopy temperatures are observed by 
ECOSTRESS and are limited to only the highest quality data.

Table 2 | Results from model sensitivity studies

Most likely scenario (Tcrit = 46.7) Drought Tcrit Tcrit range Tcrit duration Soil moisture 
coefficient

Maximum 
evaporation 
cooling

LAI 5 5% 20% 45 °C 49.9 °C 46.7 ± 2 °C More than 
three periods

−38.2 3.7 °C

Total temperature 
increase (°C)

3.9 ± 0.5 3.6 ± 0.7 4.9 ± 1.1 2.6 ± 0.6 7.3 ± 0.8 3.8 ± 0.7 4.7 ± 0.8 4.1 ± 0.7 5.2 ± 0.5

Timescale until 
leaf death (years)

132 (102–163) 120 (88–170) 163 (108–238) 89 (69–133) 244 (204–300) 131 (100–185) 159 (129–220) 138 (91–183) 173 (145–202)

An individual-based model showing the estimated amount of climate change under different scenarios before leaf death. The results from the ‘most likely scenario’ with an LAI of 5, 10% drought 
probability, 46.7 °C Tcrit, Tcrit range = 0, Tcrit duration = 1, a soil moisture exponent of −33.6, and maximum evaporative cooling of 4.4 °C are first shown. Then, the results of contrasting extreme 
scenarios as a means of a sensitivity analysis in which we keep all other variables as in the ‘most likely scenario’, but vary the one mentioned are shown. Temperature increase results represent 
means ± 1 s.d., whereas timescale results represent means and range in parentheses (n = 30 simulation runs).
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warming experiments in Brazil showed large (27%) decreases in tran-
spiration when leaves reached either T50 or Tcrit for an extended period 
(more than 8 min) (Fig. 3). It was not possible to determine which (T50, 
extended Tcrit or a different variable) was more critical for the decrease 
in transpiration in our dataset (but another recent study has found leaf 
death when leaf temperatures exceeded Tcrit for between 10 and 40 min 
(ref. 29)). If a longer time is necessary to exceed Tcrit before leaf death, Tcrit 
will be exceeded less often and our model suggests that the forest cano-
pies could resist an additional 0.8 °C increase in air temperatures before 
leaf death (Table 2). Previous work had suggested that irreversible  
damage will often occur at 45–60 °C30.

Tcrit was the largest source of uncertainty in the model and changed the 
tipping point temperatures by between 2 and 8 °C (Table 2). Tcrit has been 
adopted because it is relatively easy to measure and can be standard-
ized across ecosystems. However, the effect of Tcrit on plant hydraulics 
still needs more research31. Other uncertainties include the impor-
tance of Tcrit versus T50 on enzyme denaturation and how long exposure 
to high temperatures is needed for enzyme denaturation to occur1.  
We also assumed that Tcrit does not acclimate to warming—acclimation  
has been observed in temperate species32, but the few studies  
that have examined acclimation in tropical species found no or very 
limited evidence for upregulation of Tcrit

11,33 (although warm-selected 
tropical trees in Biosphere 2 did show acclimation of Tcrit

34). In a sensi-
tivity study, we allowed acclimation by enabling leaves to increase Tcrit 
by 0.5 or 1 °C, which increased forest resistance to warming by similar 
amounts (by 0.5 and 1 °C).

An additional assumption was that if all leaves die at Tcrit, the tree will 
die. However, tropical trees may use non-structural carbohydrate26,35 
reserves to reflush leaves in later years, but this is highly uncertain. 
Given these uncertainties, we made the simple assumption that 
leaf-level Tcrit is a general signal of enzyme denaturation (supported 
by ref. 36), which will have a range of other impacts, including reducing 
evaporative cooling and possibly leading to tree death. It is clear that 
further studies are needed. However, in a sensitivity study, we tried to 
account for high non-structural carbohydrates by allowing trees to 
reflush a leaf area index(LAI) of 2 (for example, increase total LAI to 7), 
which slightly increased resilience by 0.2 °C (Supplementary text). We 
also assume that all sunlit leaves have an equal chance of dying, but leaf 
orientation probably impacts both leaf temperatures and Tcrit and only 
further studies may address this. If the assumptions above are robust, 
then our model suggests that tropical forests may be approaching a 
high temperature threshold.

How close future predictions of temperature increases in tropical 
forests are to our predictions of leaf death is to be determined. An 
ensemble of Coupled Model Intercomparison Project (CMIP5) models 
(with similar results from CMIP6 (ref. 37)), the ‘worst-case scenario’ 
(RCP 8.5) predicts temperature increases of 3.3 ± 0.6 °C by 2081–2100 
for tropical regions, with land regions heating by approximately 5 °C 
by 2181 in RCP 6.0 and by 2081 in RCP 8.5 (ref. 2). This level of climate 
change is within the range of our most likely scenario of 3.9 ± 0.50 °C of 
temperature increases that lead to a tipping point. However, the 4 °C is 
out of the range of the ‘best-case scenario’ (RCP 2.6) of 0.9 ± 0.3 °C, or 
1.4 ± 0.5 °C for the land surface. Tree death could come earlier through 
a combination of mechanisms and their interactions (for example, 
carbon starvation, hydraulic limitation and fire, among others). Fur-
thermore, even at lower temperatures, partial canopy death can nega-
tively affect CO2 uptake feedbacks, which could accelerate climate 
change effects. Our sensitivity study (Table 2) shows temperature 
ranges leading to leaf death between approximately 2.0 and 8.1 °C 
(the lowest and highest scenarios plus error). Scenario uncertainty due 
to the change in drought prevalence had a relatively small role, shifting 
our best estimate by approximately 0.4 °C. Most of this uncertainty 
is methodological (Tcrit value and high temperature duration), which 
could be reduced with further studies and method standardization of  
Tcrit measurements.

Conclusion
Our work suggests that a tipping point in metabolic function in tropi-
cal forests could occur with 3.9 ± 0.5 °C of additional warming, which 
is more than expected for tropical forests under RCP 2.6, but less than 
under RCP 6.0 or 8.5. We used Tcrit to simplify an enormously complex 
process and we want to emphasize that even our great uncertainty 
(2–8 °C) estimates may ignore critical feedbacks such as sensitivity of 
reproduction to high temperatures, hydraulic failure due to embolisms 
and, more generally, other unexplored positive-feedback loops. Recent 
literature has suggested a resilience of tropical forests to how warming 
impacts carbon uptake34 (but see ref. 25) and long-term drought38. How-
ever, Tcrit acts as an absolute upper limit and it seems that, if our assump-
tions in the model are correct, crossing such a threshold is within the 
range of our most pessimistic future climate change scenarios (RCP 
6.0 or 8.5). In addition, deforestation and fragmentation can amplify 
local temperature changes39. The combination of climate change and 
local deforestation may already be placing the hottest tropical forest 
regions close to, or even beyond, a critical thermal threshold40. There-
fore, our results suggest that the combination of ambitious climate 
change mitigation goals and reduced deforestation can ensure that 
these important realms of carbon, water and biodiversity3,4 stay below 
thermally critical thresholds.
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Methods

Field data
We estimated canopy temperature at the KM 83 eddy covariance tower 
in the Tapajos region of Brazil41–43 using a pyrgeometer (Kipp and 
Zonen) mounted at 64 m to measure the upwelling longwave radiation  
(L↑ in W m−2) with an estimated radiative-flux footprint of 8,000 m2  
(ref. 21). Data were collected every 2 s and averaged over 30-min inter-
vals between August 2001 and March 2004. We estimated canopy tem-
perature with the following equation:

L ECanopy temperature (°C) = ( ↑/( × 5.67e )) − 273.15 (1)−8 0.25

We chose an emissivity value (E) of 0.98 for the tower data, as this 
was the most common value used in the ECOSTRESS data (SDS_Emis1-5 
(ECO2LSTE.001) and the broader literature for tropical forests44. We 
compared canopy temperature derived from the pyrgeometer to eddy 
covariance-derived latent heat fluxes (flux footprint of approximately 
1 km2), air temperature at 40 m, which is the approximate canopy height 
(model 076B, Met One; and model 107, Campbell Scientific) and soil 
moisture at depths of 40 cm (model CS615, Campbell Scientific). Fur-
ther details on instrumentation and eddy covariance processing can be 
found in refs. 41,43. This site was selectively logged, which had a minor 
overall effect on the forest45, but did not affect any trees near the tower.

Leaf thermocouple data. We measured canopy leaf temperature at 
a 30-m canopy walk-up tower between July to December of 2004 and 
July to December of 2005 at the same site. We initially placed 50 ther-
mocouples on canopy-exposed leaves of Sextonia rubra, Micropholis 
sp., Lecythis lurida (originally published in Doughty and Goulden8). 
Fine-wire thermocouples (copper constantan 0.005 Omega) were 
attached to the underside of leaves by threading the wire through the 
leaf and inserting the end of the thermocouple into the abaxial surface. 
The thermocouples were wired into a multiplexer attached to a data 
logger (models AM25T and 23X, Campbell Scientific) and the data were 
recorded at 1 Hz. Additional upper canopy leaf thermocouple data from 
Brazil17, Puerto Rico18, Panama19, Atlantic forest Brazil16 and Australia20 
were generally collected in a similar manner.

Satellite data
ECOSTRESS data (ECO2LSTE.001). The ECOSTRESS mission is a ther-
mal infrared multispectral scanner with five spectral bands at 8.28, 
8.63, 9.07, 10.6 and 12.05 µm. The sensor has a native spatial resolution 
of 38 × 68 m, resampled to 70 × 70 m, and a swath width of 402 km 
(53°). Data were collected from an average altitude of 400 ± 25 km 
on the International Space Station. ECOSTRESS is an improvement 
over other thermal sensors because no other sensors provide thermal 
infrared data with sufficient spatial, temporal and spectral resolu-
tion to reliably estimate LST at the local-to-global scale for a diur-
nal cycle46. To ensure the highest quality data, we used ECOSTRESS 
quality flag 3520, which identifies the best-quality pixels (no cloud 
detected), a minimum–maximum difference (MMD) indicative of 
vegetation or water47, and nominal atmospheric opacity. We accessed 
ECOSTRESS LST data through AppEEARS (https://lpdaac.usgs.gov/
tools/appeears/) for the following products and periods: SDS_LST 
(ECO2LSTE.001) from a long longitudinal swath of the Amazon for 
25 December 2018 to 20 July 2020 (Supplementary Fig. 1a, red box) 
and then a larger area of the western Amazon for 18 September to 29 
September 2019 (Supplementary Fig. 1a, green box), Central Africa for 
1 August to 30 August 2019 (Supplementary Fig. 1b) and Southeast Asia 
for 15 January to 30 February 2020 (Supplementary Fig. 1c). The dates 
were chosen as all ECOSTRESS data available at the start of the study 
for the smaller regions and for warm periods with low soil moisture 
for the larger areas. We calculated ‘peak median’, which is defined as 
the average of the highest three medians of each granule (that is, for 

the Amazon in Supplementary Fig. 1a, there were 934 granules) for  
each hour period.

Comparison of LST data. We compared ECOSTRESS LST to VIIRS LST 
(VNP21A1D.001) and MODIS LST (MYD11A1.006). A more detailed com-
parison and description of these sensors can be found in Hulley et al.15. 
Details for the sensors and quality flags used are given in Supplementary 
Table 1. Broadly, G1 for ECOSTRESS and VIIRS is classified as vegetation 
(using emissivity) and of medium quality. G2 is classified as vegetation, 
but of the highest quality. MODIS landcover classifies this region as 
almost entirely broadleaf evergreen vegetation, but using MMD (emis-
sivity), only 18% (VIIRS) and 12% (ECOSTRESS) of the data are classified 
as vegetation, rather than as soils and rocks (Supplementary Table 2). 
Therefore, we used the vegetation classification (from MMD) as a very 
conservative estimate of complete forest canopy cover and not farms, 
urban or degraded forest where rocks or soils are more likely to appear 
to satellites.

SMAP data. To estimate pantropical soil moisture, we used the 
SMAP sensor and the product Geophysical_Data_sm_rootzone 
(SPL4SMGP.005). SMAP measurements provide remote sensing of 
soil moisture in the top 5 cm of the soil48 and the L4 products combine 
SMAP observations and complementary information from various 
sources. We accessed SMAP data from AppEEARS for the following 
products and periods: the Amazon for 25 December 2018 to 20 July 
2020 (Supplementary Fig. 1a), Central Africa for 25 December 2019 
to 20 July 2020 (Supplementary Fig. 1b) and Borneo for 25 December 
2018 to 20 July 2020 (Supplementary Fig. 1c).

Warming experiments
For model validation, we used the results of three upper canopy leaf 
and branch warming experiments of 2 °C (Brazil)17, 3 °C (Puerto Rico)18 
and 4 °C (Australia)20. The first experiment (Brazil) were four individual 
leaf-resistant heaters on each of six different upper canopy species at 
the Floresta National (FLONA) do Tapajos as part of the Large-Scale 
Biosphere–Atmosphere Ecology Program in Santarem, Brazil17. On  
the same six species, black plastic passively heated branches by an aver-
age of approximately 2 °C. Initially, heat balance sap flow sensors and 
the passive heaters were added to 40 branches, but we had confidence 
in the data from 9 heated and 4 control in the final analysis. The second 
experiment (Puerto Rico) had two species (Ocotea sintenisii (Mez) Alain 
and Guarea guidonia (L.) Sleumer where leaves were heated by 3 °C at 
the Tropical Responses to Altered Climate Experiment canopy tower 
site at the Sabana Field Research Station, Luquillo, Puerto Rico18. The 
final experiment (Australia), which increased leaf temperatures by 4 °C, 
was conducted at Daintree Rainforest Observatory in Cape Tribulation, 
Far North Queensland, Australia20. Leaf heaters were installed using a 
pair of 30-G copper-constantan thermocouples, one reference leaf 
and one heated with a target temperature differential of 4 °C. There 
were two pairs in the upper canopy of each tree crown installed in 2–3 
individuals across four species with the thermocouples installed on 
the underside of the leaves. Two absolute 36-G copper-constantan 
thermocouples were installed in each species to measure the leaf tem-
peratures of the reference leaves. Thermocouple wires connected into 
an AM25T multiplexer from Campbell Scientific connected to a CR1000 
Campbell datalogger. More details about the experiment and sensors 
can be found in ref. 20.

Model
We created a model of individual leaves on a tree (100 × 100 grid where 
each pixel is a leaf) using MATLAB (Mathworks version 2022a) to esti-
mate the upper limit of tropical canopy temperatures with projected 
changes in climate. At the start of the simulation, we randomly applied 
the measured distribution (ambient, Fig. 1c) of canopy leaf tempera-
tures of more than 31.2 °C (chosen to give a mean canopy temperature 

https://lpdaac.usgs.gov/tools/appeears/
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of 33.1 ± 0.4 °C, matching the canopy average; Fig. 1b) to the entire 
grid. Each year, we increased the mean air temperatures by 0.03 °C to 
simulate a warming planet. As air temperatures reached +2, 3 and 4 °C, 
we applied the leaf temperature distributions (but subtracted out the 
air temperature increases) from the different warming experiments 
(+2 °C (Brazil), +3 °C (Puerto Rico) and +4 °C (Australia), respectively 
(Extended Data Fig. 4)). We ran the model at a daily time step with leaves 
flushing once a year (all dead leaves reset to living each year).

In addition, to take into account the effect of climate inter-annual 
variation—specifically drought—these mean canopy temperatures were 
further increased or decreased by deviations from mean maximum air 
temperatures at 40 m pulled each day from the Tapajos eddy covari-
ance tower41–43 and soil moisture at a depth of 40 cm (m3 m−3), which 
controlled canopy temperatures following equation (2) (Extended 
Data Fig. 2a).

Canopy temperature (°C) = 46.5 − 33.6 × soil moisture(m m ) (2)3 −3

For example, in a non-drought year, on a day where max air tempera-
tures were 0.1 °C higher than average and soil moisture was 0.01 m3 m−3 
lower than average (which would add 0.3 °C to canopy temperatures 
(equation (2)), we would add 0.4 °C to the grid canopy temperature that 
day. Every year, there was a 10% random probability of either a minor 
(80% probability) drought, which reduced soil moisture by 0.1 m3 m−3 
and increased air temperatures by 0.5 °C or severe drought (20% prob-
ability), which reduced soil moisture by 0.2 m3 m−3 and increased air 
temperatures by 1 °C. This is similar to the Amazon-wide temperature 
increases during the last El Niño6.

If an individual leaf temperature increases to above 46.7 °C (Tcrit), the 
leaf died, following Slot et al.1. Previous research has suggested that 
irreversible damage could begin at 45 °C30 and T50 for tropical species 
is 49.9 °C1, and we used these values in a sensitivity study. We further 
explored the effect of duration of Tcrit on mortality in a sensitivity study 
(ranging between needing a single exposure to four exposures to Tcrit to 
die). Over the season, if a leaf died, then it did not contribute towards 
canopy evapotranspiration. We ran simulations as a 3D canopy with an 
LAI of 5; if the top leaf died, then it was replaced by a shade-adapted leaf 
with a Tcrit of 1 °C lower49. If each of the 5 LAIs died, then all leaves in that 
grid cell were dead and canopy evaporative cooling decreased by that 
percentage. Several lines of evidence suggest that under normal hydrau-
lic conditions, when radiation load increases from approximately 350 
to 1,100 W m−2 (for example, between shady and sunny conditions), 
average canopy temperature increases by approximately 3 °C and 
therefore evaporative cooling for a full 1,100 W m−2 is approximately 
4.4 °C8,21 (we vary this in a sensitivity study between 3.7 and 5.1 °C). For 
example, if, over a year, 1,000 leaves (10% of all leaves) surpass Tcrit and 
die, evaporative cooling for all leaves in the grid will be reduced by 10% 
(1,000/(100 × 100 grid)) or 0.44 °C and 0.44 °C will be added to mean 
canopy temperature. Therefore, mean canopy temperature could heat 
up by a maximum of 4.4 °C either due to a reduction of soil moisture or 
from an increase in dead leaves. We ran each simulation until the point 
where all leaves were dead, and repeated this 30 times. We assumed 
loss of tree function following the death of all leaves, but we discuss 
this further in the ‘Discussion’ section. We then ran sensitivity studies 
for several of the key variables (bold indicates the standard model 

parameter) including: drought (0.05, 0.1, to 0.2 m3 m−3 decrease in soil 
moisture), change in Tcrit (45, 46.7, 49.9 °C), Tcrit range (100 × 100 grid 
= random distribution of 46.7 ± 2, 100 × 100 grid = 46.7 ± 0), maxi-
mum evaporative cooling (3.7, 4.4 °C), (Tcrit duration (exceed Tcrit once, 
exceed Tcrit more than three times) and soil moisture coefficient (−33.6 
−38.2; that is, change the slope from Extended Data Fig. 2a by ±1 s.d.).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
We provide key data in the supplementary information. Data and code 
to produce all figures are available at https://doi.org/10.5061/dryad.
fqz612jx1. Source data are provided with this paper.

Code availability
Data and code to produce all figures are available at https://doi.org/ 
10.5061/dryad.fqz612jx1.
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Extended Data Fig. 1 | Regions of interest. Tropical forest regions in A) 
Amazon, B) Central Africa and C) SE Asia used for the retrieval of ECOSTRESS 
LST and SMAP data. The red area was used to ground-truth ECOSTRESS LST 
with the pyrgeometer.



Extended Data Fig. 2 | Impacts on canopy temperature. (A) Linear regression 
of canopy temperature versus soil moisture (40 cm depth) at the km 83 eddy 
covariance tower (r2 = 0.46, P = 7e-10, N = 62). (B) Linear regression of canopy 
temperature as a function of air temperature during sunny periods during the 
wet (green circles) and dry (red circles) season at the km 83 eddy covariance 
tower in the Tapajos region of Brazil. Red line shows a linear fit for the dry 

season (r2 = 0.96, P = 3e-21, N = 29) and the lower line is a one-to-one line. (C) 
Linear regressions of canopy temperature as a function of latent heat flux for 
warm (>30 °C) periods (r2 = 0.50, P = 0.009, N = 11) at the km 83 eddy covariance 
tower in the Tapajos region of Brazil. (D) Linear regression (r2 = 0.75, P = 2e-5, 
N = 16) using data from Fig. 1a comparing ECOSTRESS dry season to 
pyrgeometer dry season data from the Tapajos (Km 83).
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Extended Data Fig. 3 | Histograms of canopy temperature. Histograms of 
the canopy temperatures as (top) 30 min average periods and (bottom) two 
second instantaneous observations, where total shortwave energy load is 

>1000 W m−2, as measured by a downward facing pyrgeometer in the Tapajos 
region of Brazil.



Extended Data Fig. 4 | Leaf thermocouple data from warming experiments. 
Canopy top tropical leaf thermocouple measurements for normal (blue) and 
warmed leaves (red) for Brazil (+2 °C), Puerto Rico (+3 °C), and Australia (+4 °C). 

Insets show the long tail distribution of temperatures and text records the 
highest leaf temperature.
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Extended Data Fig. 5 | Leaf thermocouple data. Canopy top tropical leaf 
thermocouple measurements for (top) Brazil km 67, (middle) Panama and 
(bottom) the Atlantic Forest in Brazil. Insets show the long tail distribution of 
temperatures and text records the highest leaf temperature. The resampled 

assumes a similar number of samples (~N = 400) at 38 °C for both sites and fits a 
curve to extrapolate the long tail. The Atlantic forest is a cooler forest (at ~1000 m) 
and the median temperature of the Amazon is ~4 °C higher than the Atlantic 
forest.



Extended Data Fig. 6 | Duration of warming. Periods when the leaves were warmed by >8 min during the Tapajos warming experiment for individual leaves (thin 
lines) and averaged (thick red line). Text in figure indicates the percent of time leaves exceeded Tcrit for greater than 6 and 8 min.
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Extended Data Fig. 7 | Finding African peak temperatures. Procedure for 
finding peak canopy temperatures using ECOSTRESS data for central Africa. 
(A) Log10 histogram of temperatures for (B) a region of Central Africa.  

A diurnal curve showing all ECOSTRESS LST data for central Africa versus (C) 
time of day and (D) time of year. (E) SMAP soil moisture (m3 m−3) data showing 
periods of dry weather.



Extended Data Fig. 8 | Finding SE Asian peak temperatures. Procedure  
for finding peak canopy temperatures using ECOSTRESS data for SE Asia.  
(A) Log10 histogram of temperatures for (B) a region of Central Africa.  

A diurnal curve showing all ECOSTRESS LST data for SE Asia versus (C) time of 
day and (D) time of year. (E) SMAP soil moisture data (m3 m−3) showing periods 
of dry weather.
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Extended Data Fig. 9 | Comparison of LST temperature data. We show  
the spatial distribution of LST data for three sensors (VIIRS, MODIS, and 
ECOSTRESS) for similar time periods (Sept 18–28, 2019) for similar areas in the 
Amazon basin. The difference between the left, middle and right are different 
data quality flags for no flag (left), QF g1 from Supplementary Table 1 (middle) 
and QF g2 (right). We used three levels of quality flags (ECOSTRESS – G1 - 3522 

and 3520, G2 =3520, VIIRS – G1 – 12001, 15841, 11745, 32225 and G2 = 32225,  
and MODIS – G1 - 0 and 65 and G2 -0) for the region depicted in Extended Data 
Fig. 1a during the same period (18 September to 28 September 2019). Quality 
flags were complex with 136 for ECOSTRESS and 229 for VIIRS (but only 8 for 
MODIS).



Extended Data Fig. 10 | Histogram of LST temperature data. (top) We show 
log10 histograms of LST data for three sensors (VIIRS, MODIS, and ECOSTRESS) 
for similar time periods (Sept 18–28, 2019) for similar areas in the Amazon 
basin. The difference between the left, middle and right are different data 
quality flags for no flag (left), QF g1 from Supplementary Table 1 (middle) and 
QF g2 (right). We used three levels of quality flags (ECOSTRESS – G1 - 3522 and 

3520, G2 =3520, VIIRS – G1 – 12001, 15841, 11745, 32225 and G2 = 32225, and 
MODIS – G1 - 0 and 65 and G2 -0) for the region depicted in Extended Data 
Fig. 1a during the same period (18 September to 28 September 2019). (bottom) - 
A scaled in comparison for the same dataset showing the much higher 
resolution of ECOSTRESS versus VIIRS and MODIS LST.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We created custom code using matlab to analyze our data and this code and the corresponding data is available through a link listed in the 
paper.

Data analysis We created custom code using matlab to analyze our data and this code and the corresponding data is available through a link listed in the 
paper.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

We provide key data as a .csv file as a supplement and all other data and code through a link listed in the paper.
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Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid 
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in 
study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the 
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for 
sharing of individual-level data; provide overall numbers in this Reporting Summary.  Please state if this information has not 
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based 
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Here we use data from the new ECOSTRESS sensor to estimate peak pantropical forest canopy temperatures.  We begin by ground 
truthing the satellite data with tower-based pyrgeometer data.  We then use these data to determine what causes variation in peak 
temperatures at the canopy scale and show similar trends driving peak temperatures across all of the Tropics.  Critically, we show 
that for a given canopy temperature, individual leaf temperatures display a “long tail” of values in the distribution, where the 
temperatures of a few individual leaves far exceed that of the overall canopy, and that this skewed distribution persists under leaf 
warming experiments of 2, 3 and 4 °C.  Finally, we develop a simple empirical model to explore the implications of observed leaf 
temperatures on the fate of tropical forests under future climate change. 

Research sample We measured canopy leaf temperature at a 30 m canopy walk-up tower in Brazil.  Additional upper-canopy leaf thermocouple data 
from Brazil, Puerto Rico, Panama, Atlantic forest Brazil and Australia, were generally collected in a similar manner.  We also used 
remote sensing data and create an empirical model.

Sampling strategy The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission is a thermal infrared (TIR) 
multispectral scanner with five spectral bands at 8.28, 8.63, 9.07, 10.6, and 12.05 m.  The sensor has a native spatial resolution of 
38 m x 68 m, resampled to 70 m x 70 m, and a swath width of 402 km (53 ). Data are collected from an average altitude of 400 ± 25 
km on the International Space Station (ISS).  To ensure the highest quality data, we used ECOSTRESS quality flag 3520, which 
identifies the best quality pixels (no cloud detected), a minimum-maximum difference (MMD) indicative of vegetation or water (Kealy 
and Hook 1993), and nominal atmospheric opacity.  We accessed ECOSTRESS LST data through the AppEEARS website (https://
lpdaac.usgs.gov/tools/appeears/) for the following products and periods: SDS_LST (ECO2LSTE.001) from a long longitudinal swath of 
the Amazon for 25 December 2018 to 20 July 2020 (SI Fig 1a red box) and then a larger area of the western Amazon for 18 
September to 29 September 2019 (SI Fig 1a green box), Central Africa for 1 August to 30 August 2019 (SI Fig 1b), and SE Asia for 15 
January to 30 February 2020 (SI Fig. 1c).  The dates were chosen as all ECOSTRESS data available at the start of the study for the 
smaller regions and for warm periods with low soil moisture for the larger areas. 

Data collection Authors listed in the paper were responsible for the collection of the leaf temperature data.

Timing and spatial scale We accessed ECOSTRESS LST data through the AppEEARS website (https://lpdaac.usgs.gov/tools/appeears/) for the following 
products and periods: SDS_LST (ECO2LSTE.001) from a long longitudinal swath of the Amazon for 25 December 2018 to 20 July 2020 
(SI Fig 1a red box) and then a larger area of the western Amazon for 18 September to 29 September 2019 (SI Fig 1a green box), 
Central Africa for 1 August to 30 August 2019 (SI Fig 1b), and SE Asia for 15 January to 30 February 2020 (SI Fig. 1c).  

Data exclusions No data were excluded after following our methodology.
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Reproducibility Our results can be replicated using the procedures described in the methodology.
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Blinding Not relevant.
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gradient reveals minimal photosynthetic and respiratory acclimation. Plant. Cell Environ. 44, 2879–2897 (2021). 
Rey-Sanchez, A. C., Slot, M., Posada, J. & Kitajima, K. Spatial and seasonal variation of leaf temperature within the canopy of a tropical 
forest. Clim. Res. 71, 75–89 (2016). 
Fauset, S. et al. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. 
Plant. Cell Environ. 41, 1618–1631 (2018). 

Location These are described in the following papers: 
Doughty, C. E. An In Situ Leaf and Branch Warming Experiment in the Amazon. Biotropica 43, 658–665 (2011). 
Carter, K. R., Wood, T. E., Reed, S. C., Butts, K. M. & Cavaleri, M. A. Experimental warming across a tropical forest canopy height 
gradient reveals minimal photosynthetic and respiratory acclimation. Plant. Cell Environ. 44, 2879–2897 (2021). 
Rey-Sanchez, A. C., Slot, M., Posada, J. & Kitajima, K. Spatial and seasonal variation of leaf temperature within the canopy of a tropical 
forest. Clim. Res. 71, 75–89 (2016). 
Fauset, S. et al. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. 
Plant. Cell Environ. 41, 1618–1631 (2018).

Access & import/export As far as I am aware no samples were exported.

Disturbance minimal disturbance
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Tropical forests are approaching critical temperature thresholds

	Ground validation

	Remote sensing data

	Model results

	Discussion

	Conclusion

	Online content

	Fig. 1 In situ and warming experiment leaf temperatures compared with canopy temperatures.
	Fig. 2 Remotely sensed peak canopy temperature across the tropics.
	Fig. 3 Modelled effect of future warming on tropical forests.
	Extended Data Fig. 1 Regions of interest.
	Extended Data Fig. 2 Impacts on canopy temperature.
	Extended Data Fig. 3 Histograms of canopy temperature.
	Extended Data Fig. 4 Leaf thermocouple data from warming experiments.
	Extended Data Fig. 5 Leaf thermocouple data.
	﻿Extended Data Fig. 6 Duration of warming.
	Extended Data Fig. 7 Finding African peak temperatures.
	Extended Data Fig. 8 Finding SE Asian peak temperatures.
	Extended Data Fig. 9 Comparison of LST temperature data.
	Extended Data Fig. 10 Histogram of LST temperature data.
	Table 1 Current and future temperature extremes across the tropics.
	Table 2 Results from model sensitivity studies.




