Understanding water and energy fluxes in the Amazonia: Lessons from an observation-model intercomparison

Natalia Restrepo-Coupe1,2 | Loren P. Albert1,3 | Marcos Longo4,5 | Ian Baker6 | Naomi M. Levine4,7 | Lina M. Mercado8,9 | Alessandro C. da Araujo10,11 | Bradley O'Donnell Christoffersen12,13 | Marcos H. Costa14 | David R. Fitzjarrald15 | David Galbraith16 | Hewlley Imbuzeiro14 | Yadvinder Malhi17 | Celso von Randow18 | Xubin Zeng19 | Paul Moorcroft5 | Scott R. Saleska1 \\
1Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA \\
2School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia \\
3Biology Department, West Virginia University, Morgantown, WV, USA \\
4Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA \\
5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA \\
6Colorado State University, Atmospheric Science, Fort Collins, CO, USA \\
7College of Letters, Arts, and Science, University of Southern California, Los Angeles, CA, USA \\
8University of Exeter, College of Life and Environmental Sciences, Exeter, Devon, UK \\
9Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK \\
10Embrapa Amazônia Oriental, Belém, Pará, Brazil \\
11Programa LBA, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil \\
12Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA \\
13Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA \\
14Department of Agricultural Engineering, Federal University of Vicosa, Vicosa, Mato Grosso, Brazil \\
15University at Albany SUNY, Albany, NY, USA \\
16School of Geography, University of Leeds, Leeds, UK \\
17Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK \\
18National Institute for Space Research (INPE), Center for Earth Systems Science, São José dos Campos, São Pablo, Brazil \\
19Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA

Correspondence
Natalia Restrepo-Coupe, Cupoazu LLC.
Email: nataliacoupe@gmail.com

Funding information
Gordon and Betty Moore Foundation; National Aeronautics and Space Administration, Grant/Award Number: LBA CD-32, NNX17AF65G and NNX09AL52G; U.S. DOE; Natural Environment Research Council, Grant/Award Number: NE/NO17951/1; Institute at Brown for Environment and Society

Abstract
Tropical forests are an important part of global water and energy cycles, but the mechanisms that drive seasonality of their land-atmosphere exchanges have proven challenging to capture in models. Here, we (1) report the seasonality of fluxes of latent heat (LE), sensible heat (H), and outgoing short and longwave radiation at four diverse tropical forest sites across Amazonia—along the equator from the Caxiuanã and Tapajós National Forests in the eastern Amazon to a forest near Manaus, and from the equatorial zone to the southern forest in Reserva Jaru; (2) investigate how vegetation and climate influence these fluxes; and (3) evaluate land surface model performance by comparing simulations to observations. We found that previously identified failure of models to capture observed dry-season increases in evapotranspiration (ET) was
Introduction

Tropical forests play a major role in the global water and energy cycles, and modulate tropical atmospheric circulation processes, cloud formation, and precipitation (Hagos & Leung, 2011; Held & Soden, 2006; Jasechko et al., 2013; Silva Dias et al., 2002; Wei et al., 2017; Worden et al., 2007). Water and energy fluxes are intrinsically linked, as energy is required for the phase transition from liquid to vapor. Tropical forests evapotranspire the energy equivalent of more than half of the total solar energy absorbed by earth's land surfaces (Trenberth et al., 2009), helping to maintain high atmospheric water content, increase moisture recycling, and mediate cloud development (Peters, 2016; Tan et al., 2019). Evapotranspiration (ET) mitigates heating as part of the incoming radiation is primarily "consumed" as latent heat (LE) rather than as sensible heat flux (H). High ET rates can offset the warming effect associated with model overestimations of (1) magnitude and seasonality of Bowen ratios (relative to aseasonal observations in which sensible was only 20%–30% of the latent heat flux) indicating model exaggerated water limitation, (2) canopy emissivity and reflectance (albedo was only 10%–15% of incoming solar radiation, compared to 0.15%–0.22% simulated), and (3) vegetation temperatures (due to underestimation of dry-season ET and associated cooling). These partially compensating model-observation discrepancies (e.g., higher temperatures expected from excess Bowen ratios were partially ameliorated by brighter leaves and more interception/evaporation) significantly biased seasonal model estimates of net radiation (R_n), the key driver of water and energy fluxes ($LE \approx 0.6 R_n$ and $H \approx 0.15 R_n$), though these biases varied among sites and models. A better representation of energy-related parameters associated with dynamic phenology (e.g., leaf optical properties, canopy interception, and skin temperature) could improve simulations and benchmarking of current vegetation–atmosphere exchange and reduce uncertainty of regional and global biogeochemical models.

Keywords
Amazonia, climate interactions, ecosystem, eddy covariance flux seasonality, energy balance, evapotranspiration, land surface models, tropical forests
Christoffersen et al. (2014) previously analyzed simulations from the same model-data intercomparison investigated here, focusing on modeled mechanisms of water supply (rooting depth, access to groundwater sources, and soil water availability) and vegetation demand (intrinsic water use efficiency [iWUE] and stomatal conductance) that drive the simulated dry-season reductions in ET. Christoffersen et al. (2014) identified model underrepresentation of phenological processes (including leaf development and associated changes in iWUE) as a cause of the bias. When these same LSM simulations were evaluated for their ability to represent the seasonal dynamics of carbon fluxes in these same tropical forests (Restrepo-Coupe et al., 2017), the analysis found that although water limitation was represented in models as the primary driver of the seasonality of photosynthesis across Amazonia, the LSMs did not accurately represent that seasonality. Observations showed incoming radiation and phenological cycles that included allocation lags between wood, leaf, and nonstructural carbon, and light harvesting adaptations (e.g., leaf demography) dominated carbon exchange and in some instances, were not well represented in LSMs. Both carbon and water fluxes are significantly influenced by tropical forest phenology (Chen et al., 2020; Restrepo-Coupe et al., 2017). However, the relationship between vegetation seasonal cycles and the radiation and energy exchange is not well documented.

Here, we extend the prior work of Christoffersen et al. (2014) and Restrepo-Coupe et al., (2017), building on the consistent finding that LE appears to be controlled by net radiation (R_n). If this finding is correct, then inherent in the challenge of accurate modeling of ET (equivalent LE) is the accurate simulation of the other radiation components ($L_{W_{out}}$ and SW_{out}), as well as the accurate partitioning of the relevant energy fluxes (e.g., energy allocated to LE and H; Bony et al., 2013; Getirana et al., 2014; Longo, Knox, Levine, et al., 2019), in addition to the accurate representation of phenological attributes (e.g., leaf-age driving seasonal canopy conductance values; Lin et al., 2015; Medlyn et al., 2011; see Figure 1). Yet, in tropical forests and across Amazonia there is scarce information on the seasonal cycle of energy-relevant components H, albedo (α), emissivity (ϵ), the Bowen ratio ($Bowen = H/LE$), and the outgoing and incoming longwave radiation ($L_{W_{out}}$ and $L_{W_{down}}$).

Focusing on energy dynamics, we compare forest characteristics and water and energy fluxes from EC and meteorological observations at four tropical forest sites from the Brasil flux network, three Amazonian forests close to the Amazon river (Manaus-K34, Tapajós-K67, and Caixiná-CAX) and one southern location (Reserva Jaru-RJA) to four state-of-the-art LSMs (IBIS, ED2, JULES, and CLM3.5; Restrepo-Coupe et al., 2017). The aim of this work is threefold: (1) to quantify and characterize the seasonal fluxes (timing and amplitude) and surface properties of the different water, energy, and radiation cycle components; (2) to determine the relationships between these energy-related fluxes and vegetation and climate drivers, as we investigate the ability of other simple models and relations to predict ecosystem-level fluxes (e.g., linear regressions between R_n and LE); and (3) to identify areas to refine current LSM model formulations and to enhance seasonal LE, H, and R_n simulations by including vegetation characteristics (e.g., albedo) in the analysis and improving the derivation of radiative fluxes (e.g., outgoing SW and LW), with special attention to the inherent coupling of carbon, energy, and water cycles (Figure 1).

2 | METHODS

2.1 | Site descriptions

Data were obtained at four EC flux tower tropical forest locations (Figure 2). All sites were established by the Brazilian-led Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-ECO; Keller et al., 2004) and members of the Brasil flux network (Restrepo-Coupe et al., 2013; da Rocha et al., 2004). Three EC stations comprise a longitudinal transect close to the equator (~3°S) along the Amazon river from east to west, from high to low mean annual net radiation (Figure 2) and different seasonal patterns of monthly precipitation: Caixiná (CAX), the Tapajós National forest near Santarém (K67), and the Reserva Cuieiras near Manaus (K34). The fourth site, the
Ji-Paraná Reserva Jaru (RJA) forest, is located at the southern margins of the basin, at latitude 10°S. For a detailed site description, refer to previous works by da Rocha et al. (2009), Restrepo-Coupe et al. (2013, 2017), and Table S1.

2.2 Eddy flux (EC), meteorological and biometric data

Sensible heat (H), water (ET) and carbon fluxes (F_c) were measured using the EC method (Baldocchi et al., 1988; Wofsy et al., 1993). Hourly average covariances were obtained from high frequency observations (20 Hz) of vertical wind velocity, virtual temperature (T_{son}; °C), and water (H_2O_mix; mmol mol^{-1}) and carbon dioxide (CO_2; ppm) mixing ratios measured with a 3D sonic anemometer (CSAT) and an infrared gas analyzer (LI6262; Burba, 2010; Foken et al., 2012).

The LE was calculated as the product of water mass transfer (ET; mm day^{-1}) and latent heat of vaporization (λ; MJ kg^{-1}), where LE = ET λ. λ was calculated as a function of air temperature (Brutsaert, 1982).

Meteorological observations included: air temperature (T_{air}; °C), relative humidity (RH; %), precipitation (Precip; mm), wind speed (ws; m s^{-1}), turbulence measured as friction velocity (u_*; m s^{-1}), and the following radiation fluxes in W m^{-2}: incoming (SW_{down}) and outgoing shortwave (SW_{out}), and incoming (LW_{down}) and outgoing longwave (LW_{out}). Net radiation (R_n; W m^{-2}) was defined as the balance between incoming and outgoing fluxes (R_n = SW_{down} - SW_{out} + LW_{down} - LW_{out}). A four-dome net radiometer, CNR1 (Kipp & Zonen CM3 ISO-class, thermopile pyranometer, CG3 pyrgeometer, PT100 RTD) was used for the measurement of SW_{down}, SW_{out}, LW_{down}, and LW_{out} at all sites. The shortwave (SW) or solar radiation was defined as broadband radiation between 0.3 and 3 µm and the longwave (LW) as radiation with a spectral range from 3 to 300 µm. An independent R_n measurement from a single-component radiometer was available at K34 and K67.

Hourly data were subject to various quality control procedures: Values found to be outside ±3 standard deviations from the mean were removed for ws, RH, and T_{air}. Analogous and concurrent measurements were used to identify periods of instrument malfunction (e.g., T_{son} and T_{air}) recognized by observations outside two times the standard deviations from the linear relationship between the variables. Similar to processing carbon flux data, we removed LE fluxes measured during low turbulence conditions (given a site-specific u_* threshold, u_*{thresh}), thus the EC method’s no-advection assumption does not apply (see Restrepo-Coupe et al. 2013; Table S1).

The energy balance was defined as R_n = Δ = LE + H + ΔSh + ΔSc + ΔSb, where ΔSh is the sensible heat storage on the canopy layer storage, ΔSc is the energy change due to photosynthetic activity, ΔSb is the biomass heat storage, and Δ is the imbalance (Figures S1 and S2). The Δ term includes measurement errors (e.g., differences between the footprint of the radiation sensor and the EC and loss of low frequency large-scale eddies) and unaccounted fluxes: ground heat flux (G) and changes in the LE flux stored on the air column below the EC system (ΔSle). At K34 where profile temperature
observations were not available. Δ included ΔSh and ΔSb, as well. ΔSh was calculated as the hourly change in temperature across the air column (eight, five, and four height levels at K67, RJA, and CAX, respectively) multiplied by air density and specific heat at constant pressure (Figure S3). ΔSc was defined as the product of gross ecosystem productivity (see Section 2.4) and the specific energy of conversion due to photosynthesis (1.088 x 104 J gCO2⁻¹; Moderow et al., 2009). We calculated ΔSb as the product of canopy-specific heat capacity (Cveg = 2958 J kg⁻¹ K⁻¹), live wet biomass (mveg; kg m⁻²) and the change in temperature at canopy level (T_cpy; K). See Supporting Information for mveg values and T_cpy heights. To flag possible outliers, as part of our QA procedures, we used the slope of the regression (Rn vs. LE + H + ΔSh + ΔSc + ΔSb) assuming the observations outside two times the standard deviations from the linear relationship (see Figure S6).

We reviewed the seasonality of the energy balance residual as to improve the confidence in our analysis rather than determine LE-corrected values (i.e., we did not force energy balance closure). Note that we observed no statistically significant differences in the seasonal (monthly) energy balance closure (Figures S1 and S5). For an extensive review of the energy balance problem, the reader is invited to refer to the work of Foken (2008), subsequent studies (Mauder et al., 2018; Reed et al., 2018), and our Supporting Information.

At each EC site, meteorological drivers for the LSMs were generated from the standard suite of climatic variables available for periods between 1999 and 2006. We analyzed data for 2000–2005 for K34, 2002–2004 for K67, 2000–2002 for RJA, and 1999–2003 for CAX. Drivers included: LW_down, SW_down, T_air, ws, near-surface specific humidity (Q_air; g kg⁻¹), rainfall (Precip; mm month⁻¹), and surface atmospheric pressure (P_s; hPa; Figure 3). The CO₂ concentration (CO₂air; ppm) was fixed at 375 ppm, the average value during the period of measurements (de Gonçalves et al., 2009). Observational data were filled using other nearby meteorological sites and/or the mean monthly diurnal cycle; however, only successive years with gaps no larger than two consecutive months were accepted. Although model drivers were gap-filled, regressions and other calculations presented in this manuscript were implemented using only non-filled flux observations and meteorological values. We sampled the EC data to match the timing of the model drivers and output. Biogeochemical fluxes can be sensitive to canopy structure and function. For our analysis we used 16-day values of leaf area index (LAI), net primary productivity (NPP) allocated to leaves (NPP_leaf; gC m⁻² day⁻¹), wood (NPP_wood; gC m⁻² day⁻¹), and litterfall (NPP_litter; gC m⁻² day⁻¹). Litterfall data were available for all forests and included recently published values by Freire et al. (2020) for RJA. We used previously published LAI values—see Table S1 for references.
The Bowen ratio is used by some models as a driver in stomatal conductance and photosynthesis calculations (Berry et al., 2013; Sellers, 1985).

2.4 | Vegetation contributions to ET

To quantify the vegetation response to meteorology, we evaluated the seasonal differences between observed ET and the reference ET (ET_ref; also known as potential ET). The ET_ref is solely driven by atmospheric demand and climatic parameters and is independent of the vegetation water use and soil factors. The ET_ref was calculated following the FAO Penman–Monteith method as:

\[
ET_{\text{ref}} = \frac{\delta}{\delta + \gamma} \cdot R_n, \tag{3}
\]

where \(\gamma \) is the psychrometric coefficient (\(C_p \rho \alpha 10^3/0.622 \); kPa K\(^{-1}\)), \(\delta \) is the slope of vapor pressure curve (4098 \(e_{\text{sat}}/T_{\text{air}}^{-2} \); kPa K\(^{-1}\)), and \(C_p \) is the specific heat of air at constant pressure (J kg\(^{-1}\)K\(^{-1}\)).

We calculated the ecosystem water use efficiency (WUE) as the ratio between daytime photosynthetic activity (TOA >200 W m\(^{-2}\)) measured as the gross primary productivity (GPP\(_{\text{day&dry}}\); gC m\(^{-2}\) day\(^{-1}\)) to ET\(_{\text{day&dry}}\) over a 16-day period (WUE = GPP\(_{\text{day&dry}}\)/ET\(_{\text{day&dry}}\); gC mm\(^{-1}\)). The ET\(_{\text{day&dry}}\) (mm day\(^{-1}\)) was measured excluding observations during and 12 h after precipitation, and using only daytime data, and was assumed to be the ET dominated by transpiration (T) fluxes rather than by direct evaporation (E) from interception (e., after rain) and from condensation (e., dawn measurements). Similarly, the TOA threshold removed all early morning-late afternoon values from the WUE calculations, thus small ET values translated into abnormally high efficiencies without physical merit. Here, we use the term gross primary productivity (GPP) interchangeably with gross ecosystem productivity (GEP; gC m\(^{-2}\) day\(^{-1}\)) and negative gross ecosystem exchange (GEE; gC m\(^{-2}\) day\(^{-1}\)), where GPP = GEP = -GEE (Stoy et al., 2006). The GEE was estimated from the measured daytime net ecosystem exchange (NEE; gC m\(^{-2}\) day\(^{-1}\)) by subtracting estimates of ecosystem respiration (\(R_{\text{eco}} \); gC m\(^{-2}\) day\(^{-1}\)), which in turn were derived from nighttime NEE (GEE = -NEE + \(R_{\text{eco}} \)). The NEE was calculated as the sum of the fluxes measured at the top of the tower and the CO\(_2\) storage flux (NEE = \(F_c + S_{\text{CO2}} \)) and filtered for low turbulence periods (site-specific \(u_{\text{cri}} \)). \(R_{\text{eco}} \) was calculated as the average within a centered 5-day wide moving window, assuming at least eight valid hours of nighttime NEE (we expanded the window up to 30 days until sufficient valid data were included). The selected \(R_{\text{eco}} \), moving window accounts for sensitivity to seasonally varying soil moisture. Daytime \(R_{\text{eco}} \) was assumed to be equal to nighttime \(R_{\text{eco}} \). See Supporting Information and Restrepo-Coupe et al. (2013, 2017) for uncertainty analysis and additional methods.

To better understand the contribution of vegetation to LE and consequently to the partition of turbulent heat fluxes (Figure 1), we calculated the canopy stomatal resistance to water vapor (rsV; s m\(^{-1}\)) and the corresponding canopy conductance (Gs; mmol m\(^{-2}\) s\(^{-1}\)).

2.3 | Surface emissivity (\(\varepsilon_s \)), Bowen ratio, outgoing longwave radiation (LW\(_{\text{out}}\)), and other calculations

We used observations of the longwave radiation balance (LW\(_{\text{down}}\) and LW\(_{\text{out}}\)) as per the integral of the Planck radiation function, the Stefan–Boltzmann equation, to obtain the measure of the surface’s ability to emit energy by radiation, the Earth’s surface spectral emissivity (\(\varepsilon_s \)):

\[
\text{LW}_{\text{out}} = \varepsilon_s \sigma_{SB} T_{\text{skin}}^4 + (1 - \varepsilon_s) \text{LW}_{\text{down}}, \tag{1}
\]

where \(\sigma_{SB} \) is 5.6704 x 10\(^{-8}\) W m\(^{-2}\) K\(^{-4}\) the Stefan–Boltzmann constant, \(T_{\text{skin}} \) is the skin temperature (K), and \(\varepsilon_s \) is the effective emissivity of the atmosphere (Jin & Liang, 2006). The equation included the reflected fraction of LW\(_{\text{down}}\) the second term (1 - \(\varepsilon_s \)) LW\(_{\text{down}}\), following Kirchoff’s law, which assumes that absorptivity and emissivity are the same for each spectral band (Liou, 2002). We used canopy level temperature measurements (lagged as to reach a maximum four hours after peak \(T_{\text{air}} \) as a proxy for \(T_{\text{skin}} \) (Moderow et al., 2009; see Supporting Information section 4). No contact thermometry was installed at any of the study sites. We solved for \(\varepsilon_s \):

\[
\varepsilon_s = \frac{\text{LW}_{\text{out}} - \text{LW}_{\text{down}}}{\sigma_{SB} T_{\text{skin}}^4 - \text{LW}_{\text{down}}}. \tag{2}
\]

The derivation of \(\varepsilon_s \) is a simplification of a complex process: We did not account for the vertical variations of \(T_{\text{air}} \) and we neglected the re-emission of LW radiation by water vapor. Nonetheless, we are measuring LW\(_{\text{down}}\) and LW\(_{\text{out}}\) at the four forests and we see this calculation as an improvement over the assumed emissivity values used by some LSMs. Similarly, to identify possible bias on model LW\(_{\text{out}}\) calculations, we solved Equation (2) for \(T_{\text{skin}} \) assuming \(\varepsilon_s \) values of 0.99 (see Supporting Information section 4).

Here we include 1-km grid MOD11A2.v6 (Wan et al., 2015), the land surface temperature (LST) product to scale and compare \(T_{\text{air}} \) measurements to satellite-derived LST used by some models on their emissivity calculations (Figure SB).

To describe the forest optical brightness, we calculated the daytime albedo (top of the atmosphere radiation, TOA >200 W m\(^{-2}\)) as the unitless ratio of outgoing to incoming solar radiation (\(\alpha = \text{SW}_{\text{out}}/\text{SW}_{\text{down}} \)). We computed the TOA following Goudriaan (1986) and set a threshold of TOA and SW\(_{\text{down}}\) >200 W m\(^{-2}\) to constrain daytime observations. To characterize the heat transfer and the partition between water and sensible heat fluxes, we used the Bowen ratio calculated as the fraction of \(H \) to LE (Bowen = \(H/LE \)).
following the flux-gradient method as described by Wehr and Saleska (2015, 2021; see Supporting Information section 6 for calculations and sensitivity analysis).

2.5 | Land surface models

We present output from four process-based LSMs that were part of the "Interactions Between Climate, Forests, and Land Use in the Amazon Basin: Modeling and Mitigating Large-Scale Savannization" project (Powell et al., 2013; Restrepo-Coupe et al., 2017). We used the Community Land Model-Dynamic Global Vegetation Model version 3.5 (CLM3.5; Gotangco Castillo et al., 2012; Oleson et al., 2008; Stockli et al., 2008), the Ecosystem Demography model version 2 (ED2; Longo et al., 2018; Longo, Knox, Medvigy, et al., 2019; Medvigy et al., 2009), the Integrated Biosphere Simulator (IBIS; Foley et al., 1996; Kucharik et al., 2000), and the Joint UK Land Environment Simulator (JULES v.2.1; Best et al., 2011; Clark et al., 2011). The LSM energy and water cycle dynamics, including how radiation and conductance were calculated by models, are presented in Table S2.

Models compute \(R_n \) as the sum of \(LW_{\text{down}} \) and \(SW_{\text{down}} \) (forcing drivers) minus the outgoing energy flux, \(LW_{\text{out}} \) and \(SW_{\text{out}} \) calculated using parameters assigned to a plant functional type (PFT) and/or via different canopy radiation transfer models and equations (e.g., the two-stream model and the Beer–Lambert law; Fisher et al., 2018). Later, \(R_n \) is partitioned into LE and \(H \). This partition is determined by atmospheric demand and the amount of water available for evaporation and transpiration (if the water supply is exhausted, energy will ultimately be spent exclusively on \(H \)). If water is available, LE will be driven by temperature, wind velocity, available radiant energy, and will be modulated by \(G_s \) and aerodynamic conductance (\(G_z \) Figure 1). The \(G_s \) representing the exchange of \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) between multiple canopy leaves and the atmosphere, is controlled by meteorological and edaphic conditions given the ecosystem's structure, and by plant trait expressions that determine the photosynthetic capacity (e.g., quality and quantity of leaves and stomatal behavior). Therefore, \(G_s \) links the energy, carbon, and water cycles, and constitutes a key vegetation status descriptor for LSMs.

LSMs calculated the downregulation factor for stomatal conductance due to soil water stress (FSW; also known as the \(\beta \) term) following Oleson et al. (2008; CLM3.5) and Castanho et al. (2016; ED2, IBIS, and JULES). The FSW factor ranges from 0 (maximum stress) to 1 (no stress).

Model diagnostic variables complied with radiation energy and water conservation equations (Equation 4 and 5). The energy balance residual was always smaller than 1 W m\(^{-2}\):

\[
SW_{\text{down}} - SW_{\text{out}} + LW_{\text{down}} - LW_{\text{out}} - H - LE - G = \Delta S_b + \Delta S_i, \tag{4}
\]

And the water balance residual was less than \(1 \times 10^{-6} \) kg m\(^{-2}\) s\(^{-1}\) defined by:

\[
\text{Prec} - ET - R - GW + F = (\Delta \text{intercept} + \Delta \text{surfstor} + \Delta \text{soilmoist}) / dt, \tag{5}
\]

where \(R \) is surface runoff, \(GW \) is subsurface runoff, \(F \) is recharge from rivers, and \(\Delta \text{intercept}, \Delta \text{surfstor} \) and \(\Delta \text{soilmoist} \) are changes in interception, surface storage, and soil moisture, respectively (all values in units of kg m\(^{-2}\) s\(^{-1}\)).

2.6 | Calculating seasonality and comparing models to observations

For each hour on the 16-day period we used all available measurements (minimum four observations per hour; Figure S7). We calculated the mean of the average daily cycle (minimum 22/24 h of the cycle was required for calculation of seasonal mean). This method avoids assigning less weight to those periods where we have fewer measurements. For example, at K34 precipitation was common in the late afternoon; therefore, LE, \(H \), and other measurements that depend on the sonic anemometer were unavailable during rainfall events (Figure S9). Seasonal WUE (GEP\(_{\text{day}}\text{dry}/\text{ET}_{\text{day}}\text{dry} \)) and \(\text{ET}/\text{ET}_\text{ref} \) were calculated using 16-day ratios. The average annual cycle was calculated from all available 16-day periods when at least two measurements were available (2 years of data for each period).

Models were compared to observations based on the timing and amplitude metrics of their annual cycle. Correlation coefficient (\(r \)), root-mean-square difference of model-observations (RMSE), and the ratio of their variances were determined for the 16-day multiple years’ time series and the difference in amplitude and timing of the seasonal cycle were summarized using the unitless normalized standard deviation calculated as the ratio between modeled (\(\sigma_m \)) and observed (\(\sigma \)) standard deviation via Taylor diagrams (Taylor, 2001; see Figure 3e for its interpretation). Sites missing from figures indicate that the model overestimated the seasonality of observations and \(\sigma \) was >2.

We used Type II linear regressions between fluxes, parameters, and variables to understand and quantify the relationships between flux drivers and meteorological variables (e.g., \(H \) vs. \(R_n \)) and between ecosystem characteristics and processes (e.g., LAI vs. albedo), thus acknowledging both variables carried some degree of uncertainty. To describe the statistical significance of regressions, we calculated \(p \)-values and the coefficient of determination (\(r^2 \)), and the Akaike’s information criterion, among other descriptors. We compared the resulting linear models to simulations (benchmark) to identify key flux drivers and determine when and how LSMs can be underutilizing the available variable information (Abramowitz, 2005; Best et al., 2015).

3 | RESULTS

3.1 | Seasonal meteorology and ET

All sites showed contrasting degrees of seasonality in terms of rain, temperature, insolation, and/or day length, including differences in the amplitude of the radiation and precipitation annual cycles and
the timing metrics that define the start, end, peak, and dry-season length (Figure 3). Mean annual precipitation at RJA and K67 was close to 2000 mm compared to 2500 mm at CAX and K34. The dry season varied in length and strength from 1 month long at K34 to 5 months at K67 and RJA (Figure 3). Although the dry season at K34 only lasted for 1 month (August), there was a period from July to October when the precipitation was lower than the annual mean and when we observed above average incoming radiation values (similar seasonality to K67 and CAX). The number and intensity of precipitation events was different: (1) CAX with frequent low-intensity rainfall (≥250 events month$^{-1}$ of <0.5 mm h$^{-1}$), (2) strong seasonal changes at RJA (dry season with few lower than 0.5 mm h$^{-1}$ intensity events and wet season with ~50 events higher than 2.5 mm h$^{-1}$), and (3) K67 and K34 close to aseasonal intensities (2.5 mm h$^{-1}$); however, there were fewer events at K67 (~50 events month$^{-1}$) compared to K34 (~100 events month$^{-1}$; Figure S9).

The observed annual cycle of ET showed three different patterns across forests: (1) maximum water vapor flux at the beginning of the dry season declining as the season progressed at the two wettest locations (K34 and CAX); (2) a well-defined ET cycle, with a middle of the dry-season peak at K67; and (3) an aseasonal LE flux at the southern forest of RJA (Figures 3c and 4a). Modeled ET showed seasonal synchronicity with observations at the two wettest sites (K34 and CAX); however, LSMs overestimated the dry-season flux by 150–20 mm month$^{-1}$ (Figure 3c). At K67 and RJA, models exaggerated the amplitude of the water flux seasonal cycle by 180–20 mm month$^{-1}$. At these drier locations, LSMs predicted reductions in dry-season ET that were generally driven by the available soil moisture, as demonstrated by the statistically significant relationship between flux and the plant-available water model diagnostic FSW ($p < 0.01$, r^2 from 0.1 (IBIS) to 0.7 (ED2) at K67 and 0.3 (ED2) to 0.7 (CLM3.5) at RJA; Figure 3d: Figure S10). By contrast, observations showed available energy driving ET at all sites (Table S3). The slope of the regression between seasonal LE versus R_n (type II, zero intercept) was −0.6 (Figure S11; $r^2 = 0.7$ at CAX, 0.8 at K34, 0.5 at K67, and 0.1 at RJA). Seasonal T_{air} and LE showed a significant positive correlation ($r^2 = 0.42$, $p < 0.01$) at only one site, K67 (Table S3). The E_{day} was close to constant (7.7 mm day$^{-1}$) at the southern forest of RJA. RJA was the only forest where we observed no significant correlation between R_n and ET ($r^2 < 0.1$, $p = 0.9$); however, the linear model had a low RMSE value (7.78 W m$^{-2}$). Moreover, all site regressions between R_{nday} and LE_{day} showed RJA observations following the general trend (Figure 8).

3.2 | Partition of net radiation into turbulent fluxes

At the equatorial Amazon forests (K34, CAX, and K67), the 16-day cycle of H showed a maximum at the beginning and a minimum at the end of the dry season (Figure 4b). By contrast, H was close to...
aseasonal at RJA (a slight increase by the middle of the dry period). Models were able to capture the seasonal cycle of H at CAX; however, the dry-season H was underestimated by most of the LSMs at K34. LSMs overestimated LE and were out of phase with observations at K67 and RJA (Figure 4b). At K34 and RJA, the relationship between observed H and LE was weak ($r^2 < 0.2$, $p < 0.01$) and significant at CAX and K67 ($r^2 = 0.6$, $p < 0.01$; Figure S11). At RJA and CAX, measurements of R_n explained 50% of the H seasonal variability. Moreover, H was significantly correlated with R_n, the slope (zero intercept) varying from 0.12 at K67, 0.15 at CAX and RJA, to 0.22 at K34 ($r^2 = 0.4$, $p < 0.01$; Figure S11).

Observations showed that Bowen ratio values were nearly constant at ~0.32 for K34 (highest) and at ~0.21 for RJA and K67 (lowest among forests). We found that the Bowen ratio for the four LSMs was lower than the observed value at the two wettest locations (K34 and CAX) and above measurements at the two driest forests (K67 and RJA). Simulations showed a strong increase in Bowen ratio during the dry season at K67 (IBIS and ED2) and at RJA (all models; Figure 4c).

Hourly and seasonal observations showed a good seasonal energy balance closure (slope LE + H vs. R_n) ranging from 90% (CAX), 88% (K67 and K34) to 83% (RJA; Figures S1 and S2). By comparison, FLUXNET sites have an average imbalance of ~20% (Wilson et al., 2002). Where profile temperature data were available, the introduction of canopy and biomass heat storage improved the overall hourly balance, especially the energy closure at dawn and dusk (see Figure S3). Δ showed a statistically significant correlation to R_n ($\Delta \sim 0.1 R_n$, $r^2 > 0.8$, $p < 0.01$) and no correlation with turbulence, T_{air}, or rainfall (Figures S3 and S4). Therefore, we had no indication of lost fluxes due to advection (low $u*$) or errors associated with turbulence bursts (high $u*$). At CAX, frequent rainfall events made EC measurements challenging, and extensive periods of data needed to be removed (causing gaps in many regressions and figures). Rainfall events at CAX were less intense; however, they were more frequent than at any other site (see Figure S9).

3.3 | Radiation balance: Outgoing longwave (LW_{out}) and reflected shortwave (SW_{out}) radiation

The SW_{out} is determined by the surface reflectance (e.g., we see low SW_{out} values in dark bodies, and high values in bright bodies) and its relation to SW_{down} is measured as albedo (α; Figure 5). Seasonality of α showed modest increases as the dry season progressed at all sites and was in-phase with the radiation seasonal cycle (Figure S15). Peak α values (when forest was at its brightest) were observed by the middle of the dry season at the equatorial Amazon sites (CAX, K34, and K67) and at the end of the dry period at RJA (Figure 6a). The average α was 0.12 at RJA, K34, and K67, and 0.09 at CAX. Negative regressions between precipitation balance...

![Figure 5: Annual cycle 16-day average of (a) outgoing shortwave radiation (SW_{out}; W m$^{-2}$), (b) outgoing longwave radiation (LW_{out}; W m$^{-2}$), and (c) net radiation (R_n; W m$^{-2}$; black continuous line), and the sum of turbulent fluxes, sensible plus latent heat flux ($H + LE$; W m$^{-2}$; black dotted line). From left to right study sites (from wettest to driest) near Manaus (K34), Caxiuanã (CAX), Santarém (K67), and Reserva Jaru southern (RJA) forests. Observations (black line) and corresponding standard deviations (σ) (dark gray shaded area) and simulations (color lines) from ED2 (blue), IBIS (red), CLM3.5 (green), and JULES (purple). Light gray shaded area is dry season as defined using satellite-derived measures of precipitation (TRMM: 1998–2018). Right-hand plots correspond to Taylor diagrams for a statistical summary of model (color coded) fluxes compared to observations of seasonal fluxes (16-day). Missing sites indicate that the model overestimates the seasonality of observations; the ratio between modeled standard deviation (σ_m) and σ is >2 [Colour figure can be viewed at wileyonlinelibrary.com]
and α (the forest was darkest at the peak of the wet season) were statistically significant at all forests ($p < 0.01$ with r^2 values up to 0.4 at K67 and K34; Figure S13). The forest characteristics showed some degree of correlation: (1) low LAI to high α (negative slope) at CAX; and (2) high NPP$_{leaf}$ to high canopy brightness (positive slope) at K67, RJA, and K34 (Figure S14). However, at all sites, the timing of maximum α did correlate with peak leaf-flush greenness index phenocam observations (e.g., Lopes et al., 2016). Models overestimated α annual mean across sites and underestimated the amplitude of the α seasonal cycle.

Observations showed mean monthly values of SW$_{out}$ close to 20 W m$^{-2}$ at most forests (Figure 5a). The models captured the seasonal cycle of SW$_{out}$ at all sites except RJA. The SW$_{out}$ was significantly correlated with SW$_{down}$ ($r^2 = 0.9$ at K34 and RJA, 0.7 at K67 and $r^2 = 0.5$ at CAX; $p < 0.01$), with the slope of their linear relationship increasing from wet to dry forests, such as 0.12 at K34 and CAX, 0.13 at K67 and 0.14 at RJA (Figure S15). Seasonal LW$_{out}$ was significantly correlated with LW$_{down}$; however, r^2 values were low ($r^2 = 0.34$ at K34, 0.5 at K67 and $r^2 = 0.2$ at CAX and RJA, $p < 0.01$) with a positive slope at K34 and RJA and a negative regression (LW$_{down}$ increased faster than LW$_{out}$ and surface-canopy temperature warming at a lower rate than the air) at CAX and K67 (Figure S17). At K67, CAX, and RJA, models captured the amplitude of the seasonal LW$_{out}$ cycle; however, at K34, the LW$_{out}$ of all model simulations was out of phase with observations (Figure 5b).

The amplitude of the annual surface emissivity (ε_s) cycle representing the ability of the surface to emit longwave radiation showed high dry-season values at RJA and CAX (Figure 6b). By contrast at CAX, observations showed low wet-season ε_s values. At K34 and K67, observed ε_s were higher than 0.98 and close to 0.95 at RJA. We found statistically significant correlations (– <0.01, r^2 range 0.3–0.8) between ε_s and rainfall (positive) and T_{air} (negative) at K34 and vice versa at CAX—no significant correlation was observed at K67 and RJA (Figure S13). LSMs generally did not capture the magnitude or seasonality of ε_s, and no LSM aligned with observations across all sites (Figure 6b). Assuming constant ε_s values of ~0.99 in agreement with satellite measurements (Figure S8) showed models either overestimated T_{skin} (~1 to 5°C) or underestimated ε_s (Figure S12).

3.4 Ecosystem characteristics and contributions to water and energy flux seasonality

The ratio between observed ET and ET$_{ref}$ can be used to identify the periods when ET does not show any signs of water-supply limitation and the flux is mostly driven by atmospheric demand and solar radiation (Figure 3c; Figure S19). Only during the wettest months at K34 we observed ET equivalent to ET$_{ref}$ (ET/ET$_{ref}$ ~ 100%) and ~70% during the driest period (Figure 7a). In general, the slope of the regression between ET and ET$_{ref}$ varied from 0.66 (RJA) to 0.74 (K67 and K34), with statistically significant differences between wet and dry-season values only seen at RJA and K34 (Figure S19).

The vegetation control over ET, here represented by G_s, showed different degrees of seasonality and trends across forests (Figure 7b); nevertheless, minimum values were observed at various times during the dry season at all sites: (1) At CAX, the dry-season G_s was close to 0.4 mmol m$^{-2}$ s$^{-1}$ and up to 1.4 mmol m$^{-2}$ s$^{-1}$—the highest G_s values were observed at this site; (2) at K34 and K67, the G_s gradually decreased from the transition wet-to-dry period to reach minimum values at the onset of the dry season.
the rainy season. (3) RJA experienced a reduction in G_s mid wet season to mid dry season (an all site minima of 3 mmol m$^{-2}$ s$^{-1}$). Models were able to capture G_s at most forests; however, they underestimated the amplitude of the annual cycle at K34 and CAX (Figure 7b). The trade-off between losing water through transpiration and gaining carbon showed different patterns

FIGURE 7 Annual cycle 16-day average of (a) ratio between the observed and reference evapotranspiration (ET/ET$_{ref}$), (b) canopy stomatal conductance (G_s; mmol m$^{-2}$ s$^{-1}$), and (c) daytime water use efficiency where ET and GEP were sampled during dry conditions (no rain in prior 12 h) assuming transpiration drives water fluxes ($WUE = GEP_{dry&day}/ET_{dry&day}$; gC mm$^{-1}$). From left to right study sites (from wettest to driest) near Manaus (K34), Caxiuanã (CAX), Santarém (K67), and Reserva Jaru southern (RJA) forests. Observations (black line) and corresponding standard deviations (σ) (dark gray shaded area) and simulations (color lines) from ED2 (blue), IBIS (red), CLM3.5 (green), and JULES (purple). Light gray shaded area is dry season as defined using satellite-derived measures of precipitation (TRMM: 1998–2018). Right-hand plots correspond to Taylor diagrams for a statistical summary of model (color coded) fluxes compared to observations of seasonal fluxes (16-day). Missing sites indicate that the model overestimates the seasonality of observations; the ratio between modeled standard deviation (σ_m) and σ is >2 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Relationships between seasonal 16-day average values of (a) canopy stomatal conductance (G_s; mm s$^{-1}$) and the ratio between sensible (H; W m$^{-2}$) and latent heat flux (LE; W m$^{-2}$), the unitless Bowen ratio (Bowen = H/LE); (b) G_s and daytime net radiation ($R_{n_{day}}$; W m$^{-2}$); (c) daytime LE (LE_{day}; W m$^{-2}$) and $R_{n_{day}}$; and (d) daytime H (H_{day}; W m$^{-2}$) and $R_{n_{day}}$. Panels may include a linear regression for all available data (black line) and single regressions fitted for each site and seasons (color lines): Manaus (K34), Caxiuanã (CAX), Santarém (K67), and Reserva Jaru southern (RJA) forests if statistically significant. Seasons classified using satellite precipitation TRMM values (1996–2018), dry (rainfall <100 mm month$^{-1}$), and wet period (>100 mm month$^{-1}$) [Colour figure can be viewed at wileyonlinelibrary.com]
across sites, suggesting leaf-level adaptations and ecosystem-level variation. For example, seasonal G_s showed a negative relationship to incoming radiation at K34, RJA, and during the dry season of K67 ($r^2 < 0.3, p < 0.01$). By contrast, higher SW_{down} correlated with high G_s at the very seasonal forest of CAX (where we observed the highest wet period rainfall values among the four forests) and during the wet season at K67 (Figure 8b; Figure S20). In general, G_s was positively related to precipitation (Figure S21).

The ratio between ecosystem carbon uptake and transpiration-dominated ET, here presented as WUE, was correlated with G_s at CAX (negative, $r^2 = 0.25, p < 0.01$) and RJA (positive, $r^2 = 0.48, p < 0.01$; Figure S22). A significant regression was observed at K67 only if G_s was lagged by 2 months (minimum WUE preceded minimum G_s; Figure 7b). The WUE changes were not significantly correlated to G_s at K34. Minimum WUE values were observed at the beginning of the dry season at equatorial sites (CAX, K34, and K67) and at the end of the dry period at RJA. The largest values of WUE, indicative of the highest photosynthetic rate per water use, were observed at different times for different sites when precipitation was >100 mm month$^{-1}$ (start of at K34 and K67 and end of the wet season at RJA all at ~ 2.6 gC mm$^{-1}$; Figure 7c). Most models were able to correctly estimate seasonal values of WUE and G_s, some overestimating G_s values at K34 and WUE at K34.

We used the Bowen ratio to describe the dominant type of heat transfer across the forests—where LE clearly dominated the turbulent flux ($H < 0.2$ LE). The relationship between Bowen ratio and G_s showed that at relatively high Bowen values >0.3, the G_s reached a minimum of -0.35 mmol m$^{-2}$ s$^{-1}$ (no further reductions were observed; Figure 8a).

4 DISCUSSION

This study identified three main tropical forest properties (relationships among fluxes and between fluxes and vegetation characteristics) that if understood and implemented in LSM equations and/or benchmarking exercises could reduce the differences between observations and model estimates of seasonal ET, R_n, and H exchange: (1) Turbulent flux partitioning (e.g., high correlation between R_n and both turbulent fluxes, and nearly aseasonal Bowen ratio values), (2) representation of canopy reflectance and emissivity (e.g., albedo’s annual cycle showed significantly lower absolute values and greater than expected amplitudes), and (3) endogenous ecosystem or physiology-related seasonality (e.g., leaf-level stomatal and WUE dynamics driven by leaf ontogeny and demography). These processes are related to surface energy properties, canopy-atmosphere water dynamics, their interactions, and more importantly the coupling between energy carbon and water exchange. Here, we discuss some of our findings and suggest future observational and modeling work to improve simulations of tropical water and energy fluxes.

4.1 Determinants and distribution of net radiation into turbulent fluxes

Observations showed ET to be driven by radiation rather than by moisture availability as predicted by models. The R_n was able to explain more than 60% of the 16-day LE values and although we report a low r^2 for the LE versus R_n regression at the southern forest of RJA, the coefficient of determination was driven by the low amplitude of the seasonal LE and R_n flux rather than the linear regressions not being able to predict LE.

Analysis of variability of the observed Bowen number annual cycle showed a nearly aseasonal ratio (-0.3 at the wet sites of K34 and CAX, and 0.21 at the dry sites K67 and RJA; Figure 4c). This suggests a proportional scaling of the forest’s energy balance at each location (H was a constant fraction of LE). There was a relationship between the direction of bias in Bowen ratio estimates and site annual precipitation. LSMs overestimated dry-season Bowen values at the driest locations of K37 and RJA and underestimated the ratio at the wettest forests of K34 and CAX (models overestimated LE and underestimated H; similar to Best et al., 2015; Haughton et al., 2016; Morales et al., 2005). The expectation of a higher Bowen ratio (increase importance of H over LE) at the drier sites did not apply at these tropical forests and could be explained by: (1) LSMs had a negative bias in dry-season R_n, (2) Models underestimated dry-season LE, probably based on the incorrect assumption that water limitation (supply) rather than radiation (demand) drove the water flux (Federer, 1982). (3) LSMs may have difficulties simulating access to soil water at clay soils (e.g., K67) and although some recent model improvements have addressed this issue (e.g., ED2; see Longo, Knox, Levine, et al., 2019), measurements of field capacity and hydraulic conductivity were unavailable at our and other similar study sites. (4) To accurately estimate transpiration may require to include processes related to plant hydraulics, like the addition of stem-water and other additional storage terms (e.g., CLM5; see Yan et al., 2020). (5) The time of rainfall, precipitation intensity, and number of events (here we report significant differences among forest sites), rather than absolute precipitation values, may significantly influence the H/LE partition. Rainfall characteristics and forest canopy structure (see item 6) can be key in defining how much water would be intercepted (directly evaporated), drained, and/or infiltrated (stored and later supplied). (6) Models may be assuming excess E from leaves surfaces (e.g., because of the high LAI forest values) and not enough water would be reaching the soil for infiltration during the wet season. This “water deficit” would be carried out into the dry season, limiting the moisture available for transpiration and artificially increasing H.

4.2 Representation of canopy reflectance (albedo) and thermal properties

Although significant, the differences between modeled-observed ET cannot be explained solely by the way models partition H and LE fluxes (Haughton et al., 2016). This study shows that correct
turbulent flux estimations require reliable R_{n} estimates. Most LSMs were able to capture the seasonal cycle of R_{n}. Thus, SW_{down} was provided to all models as a meteorological driver and dominated R_{n}. However, at CAX and RJA, both model LW_{out} and SW_{out} were higher than observations and consequently, seasonal values of R_{n} were underestimated. In some instances, the model-observation alignment was the result of obtaining the right answer for the incorrect reasons (e.g., LSMs overestimated SW_{out} and underestimated LW_{out} at K34). Models that consistently estimated higher than observed LW_{out} values may have to address the following issues: (1) the vegetation storage pool/heat capacity may be too low and/or (2) underestimated transpiration values, both causing T_{skin} to be too high. Additional measurements (e.g., thermal cameras, sapflow sensors, soil moisture profiles, and H2O isotopes) would be necessary to measure T_{skin}, to infer the relationships between LE, H, and vegetation temperature, and to understand the mechanisms driving the relations between LW_{down} and LW_{out}.

Biases in LSM R_{n} can also be attributed to SW_{out} calculations. Observed low albedos did contrast with model simulations resulting in more reflective (brighter) forest surfaces. Models underestimated the amount of canopy-absorbed energy and may be imposing an “artificial” cooling effect. Surface albedo will be highly dependent on the leaf spectral properties and in general, canopy reflectance models attribute low albedos to high LAI values (e.g., PROSAIL [Féret et al., 2017] assumes albedos ~0.2 for a LAI≥4) or albedos are parameterized as a constant (Hollinger et al., 2010). Nevertheless, we observed opposite sign regressions between LAI and albedo at CAX, thus indicating that α was not only driven by the quantity of leaves, but by leaf quality and vegetation reflective surfaces (e.g., wood and epiphylls; Chavanas-Bryant et al., 2016; Wu et al., 2017). Across the Amazon, leaf phenology has shown to be a key driver of ET and carbon uptake (Albert et al., 2018; Chen et al., 2020; Manoli et al., 2018; Restrepo-Coupe et al., 2013; Wu et al., 2017) and should be incorporated/improved on the derivation of energy, radiation, and water fluxes, as well.

4.3 | Ecosystem characteristics and their contributions to water and energy flux seasonality

Our results showed that when H was higher than 20% LE, G_{s} reached a minimum of -0.35 mmol m$^{-2}$ s$^{-1}$, with no further reductions, indicating that the vegetation continued to transpire at the same or higher rate under relatively high Bowen ratio conditions. This finding may be not surprising as Stahl et al. (2013) found that during low precipitation periods 50% of a sample of 65 large tropical trees relied on soil water below 1 m depth, and others have reported hydraulic redistribution, stem-water storage, and additional processes that may explain forests’ access to water during the dry season (Christoffersen et al., 2014; Oliveira et al., 2005; Yan et al., 2020). Moreover, the gradual dry-season decrease in G_{s} (as also reported in Christoffersen et al., 2014 and Costa et al., 2010) and increase in LE observed at the equatorial forests highlights the very significant role of evaporation during this period. However, only seasonal inventories of leaf age and traits, and evaporation versus transpiration measurements (e.g., H and O isotopes) will offer models validation data to avoid misrepresentation of the plant water exchange (e.g., under/overestimating photosynthesis and WUE; Lawrence et al., 2007).

Leaf-level stomatal conductance (g_{s}) is expected to maximize carbon uptake while also reducing water loss from leaves (or reducing the carbon cost of hydraulic failure) when water is limiting (Anderegg et al., 2018; Medlyn et al., 2011; Sperry et al., 2017), and generally is site-specific and driven by adaptation to different atmospheric seasonal drivers (Brum et al., 2018). Ecosystem-level vegetation controls (e.g., LAI and leaf age and position across the canopy profile) determine the water flux, rate of photosynthesis, and the “acceptable” degree of water stress the forest can tolerate during the dry season (Albert et al., 2018; Restrepo-Coupe et al., 2013; Wu et al., 2017). Similar to G_{s}, at all four forests we observed contrasting degrees of seasonality in terms of WUE (with a range of $\pm25\%$ of all year mean) and its timing metrics. Like GEP, across equatorial forests WUE increased as the dry season progressed and vice versa at RJA. At the ecosystem scale we found that the regression between WUE and G_{s} was not statistically significant at K34 and K67, negatively correlated at CAX and positively at RJA (Figure S22). The lack of a correlation between G_{s} and WUE would be driven by seasonal differences in intercellular CO$_2$ concentrations, atmospheric pressure and humidity, vegetation growth temperature, and other canopy characteristics (Lin et al., 2015; Medlyn et al., 2011, 2012). For example, higher vapor pressure deficit can increase transpiration and reduce WUE without any change in G_{s} and vice versa.

4.4 | Considerations for model improvement

This paper describes the seasonal patterns of different energy and water flux constituents and examines the relationships between them and different forest characteristics and climate variables at four tropical forests. We compared EC and biometric measurements to LSM simulations, as models represent our current understanding of the different atmosphere–biosphere processes at global and continental scales and are the ideal tool to predict vegetation responses to changes in climate. Our analysis highlights “forest phenology” as a significant driver of vegetation–atmosphere exchange and in particular, our data showed LSMs: (1) underestimated the amount of solar radiation the forests absorb and dry-season increases because we lack information regarding the relationship between leaf density and reflectance properties at high LAI values; (2) similarly, interception and direct evaporation may be overestimated at high LAI forests, and consequently LSMs may be underestimating infiltration and transpiration fluxes, overestimating canopy temperature, and consequently driving LSM output (3) to inaccurate estimations of LW_{out} (e.g., reducing the soil moisture content and increased canopy temperature would lead to unrealistically high T_{skin} and hence incorrect estimates of LW_{out} and SW_{out} (e.g., if we incorrectly characterize forest structure, albedo will be too high). This seasonal bias on the outgoing flux (emissivity and albedo) dominated
the model-observation R_n differences and will have an effect in the estimation of H, LE fluxes, and the Bowen ratio. Our findings can be used to benchmark LSMS and develop more robust PFT parameterization. Improvements in model development will translate into better predictions of future surface-atmosphere exchange.

ACKNOWLEDGMENTS

This research was funded by the Gordon and Betty Moore Foundation “Simulations from the Interactions Between Climate, Forests, and Land Use in the Amazon Basin: Modeling and Mitigating Large-Scale Savannization” project, the National Aeronautics and Space Administration (NASA) LBA CD-32, NASA LBA-DMIP project (NNX09AL52G), and NASA-ROSES (NNX17AF65G). N.R.C. acknowledges support from the City of Toronto Children and Human Services, Dr. Debra Wunch, Dr. Dylan Jones, and the Department of Physics at the University of Toronto. B.O.C. was funded in part by the U.S. DOE (BER) NGEE-Tropics project to Los Alamos National Laboratory. L.M.M acknowledges the UK Natural Environment Research Council funding (UK Earth System Modelling Project, UKESM. Grant NE/N017951/1). L.P.A. was supported by a Voss postdoctoral fellowship at the Institute at Brown for Environment and Society. M.L. was supported by the NASA postdoctoral program, administered by the Universities Space Research Association under contract with NASA. Research carried out at the JPL-California Institute of Technology, was under a contract with NASA. The authors would like to thank the staff of each tower site for their technical support and extensive fieldwork.

ORCID

Natalia Restrepo-Coupe https://orcid.org/0000-0003-3921-1772
Loren P. Albert https://orcid.org/0000-0002-9674-6071
Marcos Longo https://orcid.org/0000-0001-5062-6245
Ian Baker https://orcid.org/0000-0001-5162-1956
Naomi M. Levine https://orcid.org/0000-0002-4963-0535
David Galbraith https://orcid.org/0000-0002-5555-4823
Paul Moorcroft https://orcid.org/0000-0002-2876-4673
Scott R. Saleska https://orcid.org/0000-0002-4974-3628

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.